
"FORBIDDEN" TRANSITIONS IN MOLECULAR 
VIBRATIONAL-ROTATIONAL SPECTROSCOPY 

Dusan PAPOUSEK 

The J. Heyrovsky Institute of Physical Chemistry and Electrochemistry, 
Czechoslovak Academy of Sciences, 18223 Prague 8 

2555 

Received March 10, 1989 
Accepted March 20. 1989 

Dedicated to the memory of M. R. A/iev. 

1. Introduction.............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2556 
2. Elementary facts about the interaction of electromagnetic radiation with molecules 2558 
3. Various approximations to the time-dependent and time-independent molecular 

interactions ............................................................... 2564 
4. Basic theory of "allowed" and "forbidden" transitions . . . . . . . . . . . . . . . . . . . . . . . . .. 2568 
5. Overall symmetry selection rules ............................................. 2571 

5.1. Selection rules obtained with the use of permutation-inversion groups. . . . . . . .. 2572 
5.2. Selection rules obtained with the use of external rotation group .............. 2579 

6. Approximate selection rules for the vibrational and rotational transitions. . . . . . . . .. 2580 
7. Forbidden transition induced by the electric quadrupole and magnetic dipole moments 2584 

7.1. Forbidden transitions due to the electric quadrupole moment. . .. . . . . . . . . . . .. 2584 
7.2. Forbidden transitions due to the magnetic dipole moment. . . . . . . . . . . . . . . . . .. 2588 

8. Vibrationally induced rotation transitions ..................................... 2591 
8.1. Rotational transitions in the doubly degenerate vibrational states of symmetric 
top molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2593 
8.2. Rotational transitions in the triply degenerate vibrational states of spherical top 
molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2596 
8.3. Observations of the vibrationally induced rotational transitions .............. 2597 

9. Forbidden transitions induced by vibrational-rotational interactions. . . . . . . . . . . . . .. 2601 
9.1. Symmetric top molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2601 
9.2. Spherical top molecules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . . .. 2615 

10. Final remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2621 
Appendix: Mixing of the rovibronic states by the external electric and magnetic fields 2623 
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2625 

A review is given of the "forbidden" (more precisely: "perturbation allowed") transitions between 
molecular vibrational-rotational states including transitions which are induced by the electric 
dipole and quadrupole moments and the magnetic dipole moment. The basic theory of these 
transitions is outlined starting with the overall symmetry selection rules, followed by the discus
sion of the spin statistics isomers, approximate selection rules for the usual vibrational-rotational 
transitions, and forbidden transitions induced by the electric quadrupole and magnetic dipole 
moments. Forbidden transitions due to the vibrationally and rotationally induced electric dipole 
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moments are then discussed in detail for symmetric top and spherical top molecules with the 
emphasis on the physical nature of the various phenomena leading to these transitions. A sum
mary is also given of the most important experimental work on the forbidden transitions in di
atomic molecules and polar as well as nonpolar polyatomics. 

1. INTRODUCTION 

In spectroscopy, we mean by "forbidden" transitions such radiative transitions 
between quantum states of microscopic objects (e.g., atoms or molecules) which do 
not obey selection rules obtained in a certain lower order approximation. 

The division of transitions into "allowed" and "forbidden" is of course artificial 
because it is related to our theoretical models rather than to the processes which occur 
in real physical systems. Actually, no transition in a real molecule (or atom) is 
strictly forbidden: if we consider sufficiently high order interactions, both time
-dependent and time-independent, we obtain selection rules for all the transitions 
between the quantum states of a microscopic object. 

Usually a quantum transition, which can occur due to higher order interactions, 
gives rise to spectrum lines with intensities that are lower than those arising through 
stronger interactions. Thus one could expect that the spectrum lines corresponding 
to allowed transitions will be stronger than lines of the forbidden transitions. How
ever, as the experimental technique develops (increasing sensitivity and resolution), 
we can study more and more "forbidden" transitions, and from the experimentalist's 
point of view, the difference between "allowed" and "forbidden" transitions may 
not be sharp. 

Nevertheless, it is useful to preserve the concept of "allowed" and "forbidden" 
transitions for several reasons. First of all, there are transitions which become al
lowed only through extremely weak interactions. Their intensity is therefore so small 
that we do not have a chance to detect them by any experimental technique now 
available and we will not be able to detect them in the foreseeable future. It is there
fore appropriate to call them "strictly" forbidden. 

Furthermore. it is well known that spectrum lines which correspond to the "al
lowed" transitions in axially symmetric molecules (and which in most cases are the 
most prominent lines in the spectrum) do not always provide a full information 
on the molecular parameters such as the rotational or centrifugal distortion constants. 

For example, selection rules for the rotational quantum numbers J and k are 
!J.J = 0, ± 1 and !J.k = 0 for a parallel vibrational-rotational band in symmetric 
top molecules (see, e.g., ref.1 or Part 6 of this paper). These "allowed" transitions 
provide information on the rotational constants Bx , By but not on Bz or on the 
centrifugal distortion constants DK, HK etc. As a result of the centrifugal distortion 
of a rotating molecule, some other transitions may become weakly allowed, however, 
and these transitions can provide the missing information on the parameters Bz, 
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DK • HK etc. (e.g., the ilk = ±3 "forbidden" transitions in molecules of C3v sym
metry, see refs2 - 5 and Fig. 1). 

An extreme example of this situation are the purely rotational spectra of molecules 
with tetrahedral symmetry (e.g., methane CH4). Because there is no permanent 
electric dipole moment in these molecules, there are no rotational transitions allowed 
according to the zeroth order theory and no information can be obtained on the 
molecular structural parameters from these transitions simply because they are 
missing in the spectra. However, as the molecule rotates in space, centrifugal distor
tion induces a small dipole moment in the molecule which allows very weak purely 
rotational spectra (cf., e.g., ref. 6). 

Forbidden transitions have frequently played an important role in the history of 
molecular spectroscopy, primarily because of the unique information on molecular 
properties which they provided. With the rapidly developing experimental techniques 
of the high resolution molecular spectroscopy, the importance of their investigation 
can be expected to be steadily increasing. 

It might therefore be useful to summarize the present state of our investigations 
of "forbidden" transitions. Previous reviews of this problem have been written by 
Oka 7 who concentrated on the rotational spectra mainly from the experimentalist's 

FIG. 1 

Allowed (I1J = O. M = 0; sQ(.f. K) lines) 
and forbidden (I1J = O. 11k = - 3; ss 
- 3 Q(3. 3) line) transitions in the v2 band 
of 14NH3 (ref.4 ) 
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point of view and by Aliev8 who described some aspects of the theory of "forbidden" 
transitions. The basic theory of these transitions can also be found in monogra
phies1 •9 • 

In the present review, the problem of forbidden transitions will be discussed with 
the emphasis on the physical nature of the various phenomena leading to the for
bidden transitions in the rotational as well as vibrational-rotational spectra of 
molecules. In order to keep the manuscript on a manageable number of pages, 
we do not discuss here all the aspects of the problem. First of all, we consider mole
cules as isolated systems, i.e., we do not discuss transitions induced by collisions. 
We will also confine the discussion to the quantum processes which are due to the 
interaction between electromagnetic radiation and electric and magnetic moments 
of a molecule. We shall not therefore discuss the selection rules for Raman active 
transitions, partly because typical forbidden transitions have not been systematically 
studied in Raman spectra (cf. rer. 3). This is probably because there are problems 
with measuring weak transitions in Raman spectroscopy; with the increasing sensiti
vity of Raman techniques one can, however, expect new results probably in the near 
future (see refs10 •ll as for the theory of the "forbidden" pure rotational Raman 
spectra of C 3v and Td molecules and ref.12 as for the theory of "forbidden" vibra
tion-rotation Raman spectra of C3v molecules). 

Finally, we will not discuss here in detail selection rules for "allowed" and "for
bidden" transitions for molecules in electric and magnetic fields. Instead of this, 
we will outline in Appendix general conditions specifying which rovibronic states 
can be mixed by a Stark or Zeeman effect. This almost immediately reveals how 
the results of the discussion of the "field-free" selection rules can be extended to 
molecules ·in electric or magnetic fields. 

Because "forbidden" transitions are induced by perturbations (either time-de
pendent or time-independent or both), they are called perturbation allowed transi
tions. This is certainly a more appropriate but also a longer name, and we will 
simply call them forbidden transitions in further discussion. 

2. ELEMENTARY FACTS ABOUT THE INTERACTION 
OF ELECTROMAGNETIC RADIATION WITH MOLECULES 

Transitions between different quantum states of a molecule are the results of the 
time evolution of the molecular system due to its nondestructive interaction with 
electromagnetic radiation. For an isolated molecule, such processes can be described 
by the time-dependent Schrodinger equation (see, e.g., ref. 13 ) 

(2.1) 
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where I/J is the complete wavefunction depending on the spatial and spin coordinates 
of the particles (atomic nuclei and electrons) and on the time t. 

Let us suppose that the Hamiltonian :Ye can be written as a sum of two terms: 
H(q, s) which depends on the spatial coordinates q and spin coordinates s and H' 
which is a time dependent term 

:Ye = H(q, s) + H'(q, s, t). (2.2) 

The wavefunction which is the solution of the Schr6dinger equation (2.1) can be 
written as an expansion in terms of Cf1n' the eigenfunctions of H(q, s), in the form 

I/J(q, s, t) = Icn(t) Cf1n(q, s), (2.3) 
n 

where the expansion coefficients Cn are functions of time and Cf1n can be written as 

(2.4) 

By substituting from Eqs. (2.2)-(2.4) into Eq. (2.1), we obtain (cf. refY) 

Equations (2.5) represent a set of coupled differential equations for the coefficients 
cn(t) as unknowns. By solving these equations, we determine the complete wave
function I/J [Eq. (2.1)]' According to quantum mechanics, the probability of a transi
tion from the state 1>n to any other state 1>m is then determined by the value of 
\cml2 = c!cm • 

It is convenient to introduce certain approximations in solving Eqs (2.5). Ac
cording to the time-perturbation theory, we consider H' as a perturbation to H(q, s); 
if this perturbation is small and acts in a time interval from t = 0 upto t 1 which is 
not too long, we can use the first approximation, according to which Eq. (2.5) 
becomes 

ih dCm = -(2ni/")(En-E~)t(1> I H'I1> > 2 3 21t dt e m n' m = 1, , , ..• (2.6) 

In this approximation, we have for Cm: 

21ti It! . 
('".(t 1) = Cm(O) - h t=oe-(21U!h)(En- Eml t (1>ml H'I1>n> dt, m = 1,2,3, ... (2.7) 

with ('m(O) = (jmn. 
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Let us now consider in more detail the time-dependent perturbation H'. We first 
recall that according to the Maxwell theory, light is a transverse electromagnetic 
wave with the vibrating electric vector E always perpendicular to the magnetic 
vector 8. 

The electric and magnetic fields of the radiation will interact with the electrons 
and atomic nuclei of the molecule to give a time-dependent perturbation H' [cf. 
Eq. (2.2)]' In the semiclassical approach, the potential energy of interaction between 
a system of charged particles (atomic nuclei and electrons) and the electric field that 
points in an arbitrary direction is (see, e.g.14,15) 

H~ = L H~,F = - L L esFsEF. ' (2.8) 
F=X,Y,Z F=X,Y,Z s 

where es and Fs = X s' Y., Zs are the charge and coordinate of the s-th particle of the 
molecule (electrons, atomic nuclei). 

For a light travelling in the Z direction, we have the following expression for the 
space and time variations of the components EF• of the electric vector E: 

EF• = E~ cos (rot - 2rrZs/)')' F = X, Y, Z . (2.9) 

where ro = 2rrv and ), = c/v is the wavelength of the radiation. 
The size of molecules is about 10 -10 m and), == 10 - 5 m for the infrared spectrum 

region. The spatial variation of the radiation's electric field (due to Zs/).) is therefore 
very small. If we expand cos (rot - 2rrZs!A) as a power series in the small quantity 
2rrZ./)' and substitute into Eq. (2.8), we obtain for H~,F 

E,F = L. E,F = - F L.esFs L. - - -- cos rot + r rr , H ' (- ~ H(r) ) EO", ~ 1 ( 2rrZs)r ( /2) . 
r=O s r=or! ). 

(2.10) 

thus for r = 0 we obtain the time-dependent perturbation in the electric dipole 
moment approximation 

H~~~ = -E~ IesFs cos (rot) = -E~I1~e.d.) cos (rot), F = X, Y, Z (2.11) 

where p(e.d.) is the vector of the electric dipole moment whose components with 
respect to the space-fixed Cartesian axes X, Y, Z are 

(2.12) 

For r = 1, the term 

(1) _ 2rr 0", . ( ). 
HE,F - ;:- EF ,-;esFsZs sm rot , F = X, Y, Z (2.13) 
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has the physical meaning of the potential energy of interaction between the com
ponent Jl},ei q·) of the molecular electric quadrupole defined as 

and the electric field. 

lI(e.q.) = "e F Z 
r-FZ L. s s s (2.14) 

Note that while the electric dipole moment is a vector, the electric quadrupole 
moment is a tensor of the second rank having nine components Jl~/'), Jlt;yq.>, Jl~zq·), 
Jl~xq·>, ... (see also Fig. 2). 

So far we discussed the interaction between the molecular electronic moments 
and the electric field of the electromagnetic wave. Orbital motions of electrons and 
atomic nuclei induce a molecular magnetic moment which interacts with the mag
netic field of the light wave. There is also a magnetic moment associated with the 
spins of the electrons and atomic nuclei. Therefore the component of the magnetic 
moment Il(m) with respect to the space-fixed axis F can be written as 

(m) " e. (I ) JlF = L. -- F,s + gsSF .• , 
s 2msc 

(2.15) 

where ms is the mass of the s-th particle, i.e. an atomic nucleus or electron; IF,s is 
the component of the orbital angular momentum of the s-th particle, for example 

./ 

I = - ih (y ~ - Z _~) 
x~ 2rr sazs sa~ 

(2.16) 

and SF,s is the spin momentum of the s-th particle (gs is close to 2 for electrons). 

FIG. 2 

Illustration of the electric dipole moment 
in the molecule HCI and of the electric 
quadrupole moment in CO2 
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The potential energy of interaction between the molecular magnetic moment and 
the magnetic field 8 is 

H. = I H~,F = 
F=X,Y.Z 

I I BF.es (IF,s + gh.s) , 
F=X,Y,Z s 2msc 

(2.17) 

where for a light travelling in the Z direction, we have the following expression for 
the components BF• of the magnetic vector 8 with respect to the space fixed axes 
X, y, Z: 

BF• = B~ cos (wt - 2rrZsj;.) . (2.18) 

In analogy with Eq. (2.11), we can write 

H(O) - _ BO ,,(rn) cos (wt) 
B,F - FrF ' (2.19) 

where we have neglected the term with zj), in Eq. (2.18). 

If we substitute from Eq. (2.10) into Eq. (2.7), we obtain that 

(2.20) 

where 

wmn = 2rr(Em - En)jh. (2.21) 

It can be shown (see, e.g., ref. 14) by evaluating the second integral on the right-hand 
side of Eq. (2.20) that a transition between the states cPn and cPm can have a significant 
probability only if 

(2.22) 

where the upper sign holds for absorption (Em> En) and the lower one for emission 
(Em < E,,). An analogous result would be obtained for the transition induced by the 
magnetic moment. 

Eq. (2.22) represents a necessary condition for a quantum transition but not suf
ficient. This is obvious from the form of the terms standing before the integral on 
the right-hand side of Eq. (2.20). E~ depends on the intensity of the incident radiation 
and it is always different from zero in the absorption spectroscopy (quantum field 
theory predicts spontaneous emission of atoms or molecules which occurs in the 
absence of external fields). The most interesting term, however, is the matrix element 
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(2.23) 

because it describes an important molecular property. 

Eq. (2.20) holds for radiation which is plane-polarized in the F (say F = X) 
direction. If the radiation is isotropic, we also get contributions from the Yand Z 
directions: 

ICml2 (=c!cm) = 21tt1 [1<<pml JLxl<pn>12 + I<<pml JLyl<pn>12 + 

+ I<<pml JLzl<pn>12] u(vmn). (2.24) 

Eq. (2.24) gives the probability that anyone molecule will make a transition to state 
<Pm from <Pn after having been irradiated for a time tl with a radiation of energy per 
unit volume per unit frequency u(vmn). Note that the number of transitions from the 
state <Pn to <Pm per second (i.e., the transition rate) is given by Eq. (2.24) mUltiplied 
by N. and divided by t1, where Nn is the number of molecules in state <Pn. 

If we neglect the quadrupole and higher order terms (see below), the three contribu
tions in Eq. (2.24) are equal. Thus in the dipole moment approximation, it is sufficient 
to consider the properties of only one transition moment, say (<Pml JLt;.d.) I<pn>, 
because all the results also remain valid for the other two contributions. 

The matrix elements of the electric dipole moment JL}e.d.), electric quadrupole 
moment JL<;F~') and of the magnetic dipole moment JL}m.d.) [we neglect the small 
term zj), on the right-hand side of Eq. (2.18)], i.e. 

(2.25) 

are called transition moments. 

The integrated absorption coefficient for an electric dipole moment transition 
<Pm <- <Pn is given by the relationship 

(2.26) 

where a Boltzman distribution with temperature Tis assumed, No is the number of 
molecules per unit volume, Vmn is the frequency of the corresponding transition 
(in the same units as dv), Q is the partition function and Smn the linestrength given 
by 

(2.27) 

where II and v are the degenerate components of the state <Pm and <Pn. 
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Analogous expressions would be obtained for the linestrengths of transitions 
induced by the electric quadrupole or magnetic dipole moment. The value of Z/;. 
[cf. the text following Eq. (2.9)] is of the order of magnitude 10- 5 and the electric 
quadrupole contribution to the intensity of the vibrational-rotational lines should be 
a factor of approximately 10- 10 smaller than that of electric dipole moment [because 
of the different inversion parity selection rules, however, these contributions never 
occur simultaneously (see Parts 4 and 5)]. It can be also shown that the intensity 
of magnetic dipole transitions should be a factor of approximately 10- 8 up to lO-lO 
smaller than that of the electric dipole moment transitions14• 

3. VARIOUS APPROXIMATIONS TO THE TIME-DEPENDENT 
AND TIME-INDEPENDENT MOLECULAR INTERACTIONS 

It has been already mentioned that the division of quantum transitions into "allowed" 
and "forbidden" depends on the way how we decide to classify the contributions to 
the various terms in the Hamiltonian ;;e [Eq. (2.2)] to the corresponding transition 
probabilities. For example, we can consider various electric and magnetic moments 
in the time-dependent part of ;;e whose contributions to the transition probabilities 
are widely different. The same holds for the individual terms in the time-independent 
Hamiltonian H(q, s) [Eq. (2.2)]' 

We first consider various approximations to H(q, s) and then we will extend our 
discussion of the various approximations to the time-dependent part of ;;e. 

We assume that H(q, s) can be separated into the electronic and nuclear parts. 

H(q, s) = He + Hvr e + H s ' (3.1) 

where He depends only on the coordinates of electrons (and the conjugate momenta) 
as dynamical variables and on the coordinates of the atomic nuclei as parameters; 
Hvr;e depends on the coordinates of the atomic nuclei (and the conjugate momenta) 
as the dynamical variables, and it contains the potential energy as a functional 
dependence of the eigenvalues of He on the internuclear coordinates for a given 
electronic state; Hs is a spin Hamiltonian which can be written separately because 
interactions between the spin momenta and the rovibronic (electronic, vibrational, 
and rotational) motions are extremely weak. 

This is the well-known Born-Oppenheimer approximation (e.g., ref. l ) which will 
be assumed to hold throughout the following discussion. The breakdown of this 
approximation in connection with the isotopic substitution has important conse
quencies on the transition probabilities in molecular spectra which will be mentioned 
later (Part 10). 

In this paper, we discuss only vibrational-rotational transitions in the ground 
electronic state. Therefore, we omit the index e in Hvr;e. It is well known l ,9 that 
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HVT can be written for semirigid molecules in the following expanded form: 

(3.2) 

where the first subscript in Hmn is the degree in vibrational operators (coordinates 
and momenta) and the second subscript is the degree in the components of the total 
angular momentum J (we will use later the symbol F for the total angular momentum 
to emphasize that spin momenta have been also included; see Part 5). 

Pure vibrational terms in Eq. (3.5) (in cm- 1 units) can be written as 

H30 = i L k1mnqlqmqn , 
Imn 

H 40 = -i4 L kklmnqkq lqmqn + L BaP;, 
klmn a=x,Y,z 

(3.3) 

(3.4) 

(3.5) 

where q are the dimensionless normal coordinates of vibration and P are the con
jugate momenta; Ba are the rotational constants, Wk I( == vklc) is the wavenumber 
of the k-th normal vibration, k1mn and kklmn are the cubic and quartic force constants, 
respectively. 

A simple physical meaning can be assigned to the individual HmO in Eqs (3.3) to 
(3.5). For example, H 20 is the harmonic oscillator operator, H30 and H 40 describe 
the anharmonicity of molecular vibrations. 

Similarly, we can write the terms with the rotational operators as 

(3.6) 
a=x,Y,z 

(3.7) 

H22 = i L LB;1(B%YBiP + B~YBkP) qkqlJaJp , (3.8) 
a,p,y kl 

-2 L(wzlwk)1/2 qkPI LBa'%IL, (3.9) 
kl a 

where Ja are the components of the rotational angular momentum, '~l is the Coriolis 
coupling constant and B%P is a molecular parameter defined as described in ref. 1 . 

The terms in Eqs (3.6)-(3.9) have the following physical interpretation: H02 is 
the rigid rotor approximation, H 12 and H 22 are the centrifugal distortion operators, 
and H 21 describes Coriolis interaction between rotation and vibration. 
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Let us now define the zeroth-order aproximation to the time-independent part 
of the Hamiltonian. Usually, the harmonic oscillator-rigid rotor approximation, 

(3.10) 

i~ used to derive selection rules for the allowed transitions in the dipole moment 
approximation (see Part 6). 

The spin Hamiltonian Hs [Eq. (3.1)] can be considered in an extremely good 
approximation as a sum of the nuclear and electronic parts. 

Hs = Hs.n + Hs,e , (3.11) 

which completes the separation of the spin, electronic, vibrational, and rotational 
coordinates (and momenta): 

(3.12) 

Thus the complete wavefunction can be written in the zeroth-approximation as 
a product function 

(3.13) 

where rPe depends on the spatial coordinates of electrons, rPv on the vibrational co
ordinates (the normal coordinates of vibration), rPr on the rotational coordinates 
(the Euler angles e, rP, X defining the orientation of the molecular-fixed system of 
axes with respect to the space-fixed system of axes); rPes depends on the electron spin 
coordinates and rPns depends on the spin coordinates of the atomic nuclei. 

The complete wavefunction rPevrs is called the spin-rovibronic function, rPevr = 
= rPerPvrPr the rovibronic function, rPev = rPerPv the vibronic function. 

We can expand the various electric and magnetic momenta in the time-dependent 
term H(q, s, t) quite analogously as we have expanded the time-independent Hamil
tonian H(q, s) [Eq. (3.2)]. In this case, it is first convenient to express the various 
molecular momenta (electric or magnetic momenta, quadrupole momenta) in terms 
of their components with respect to the molecule-fixed axes x, y, z instead of the 
components with respect to the space-fixed axes X, Y, Z. 

Thus the component J1.z of the electric or magnetic dipole-moment operator Jl can 
be expressed in terms of the components {ix, {iy, {iz of Jl along the molecule-fixed 
axes x, y, z as 

(3.14) 

where AZa (~ = x, y, z) are the direction cosines of the angles subtended by the 
molecule-fixed axes x, y, z and the space-fixed axis Z. 
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In the approximation which considers the overall wavefunctions as the product 
functions according to Eq. (3.13), we can write 

x <4>'4>'4>'1 14>"4>"4>") e v r lIz e v r (3.15) 

because flz does not depend on the spin coordinates. 

By substituting from Eq. (3.14) into Eq. (3.15), we obtain 

<4>~4>~4>;1 Pzl4>~4>~4>~) = I <4>~4>~1 Pal4>~4>~) <4>;1 Azal4>;) . (3.16) 
a==x,Y,z 

The separation of the vibronic (4)c4>v) and rotational (4)r) terms in Eq. (3.16) is pos
sible because the componentspilX = x, y, z) are functions of the vibronic coordinates 
only while AZa are functions of the rotational coordinates only (i.e., of the Euler 
angles 0, 4>, X). 

We can integrate over the electronic coordinates in the vibronic term in Eq. (3.16) 

where flaCe', err) depends still on the nuclear coordinates. In further discussion, we 
consider only vibrational-rotational transitions within the same singlet electronic 
state (e' = err) and we write simply fla instead of flaC e', err). 

It is a usual practice to expand fla in terms of the normal coordinates of vibration q 
of the particular electronic state in the point of the equilibrium configuration of the 
atomic nuclei of that state, 

fla. = fl~e) + I(Olla/oQk)e qk + 1-L(02fla/oqJJQI)e Qkql + ... , (3.18) 
k kl 

where fl~e) is the component of the permanent electric dipole or magnetic moment 
with respect to the axes IX = X, y, z. 

The expansion of Pa. can be written as [cf. Eq. (3.2)] 

Pa = I fl~o , (3.19) 
m=O.I.2 •... 

where 

fl~o = fl~e) , (3.20a) 

(3.20b) 
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(3.20c) 

Quite analogously, we could expand the electric quadrupole moment but this will 
be discussed in Part 7 of this paper. 

It should be mentioned that expansions (3.3)-(3.5), (3.6)-(3.9), and (3.19) may 
not work well for the so-called "floppy" molecules (molecules having large amplitudes 
of vibrational motions1). Nevertheless, they are quite useful in discussing selection 
rules for the allowed as well as forbidden transitions even for these nonrigid 
molecules; certain deviations due to the anomalously large anharmonicities of the 
vibrational motions in nonrigid molecules will be discussed separately (Part 10). 

4. BASIC THEORY OF "ALLOWED" AND "FORBIDDEN" TRANSITIONS 

Because the contributions of the electric quadrupole or magnetic moments to the 
transition probabilities are much smaller than those of the electric dipole moments, 
the quadrupole and magnetic transitions are always called forbidden transitions. 
This does not mean, however, that all the electric dipole moment transitions are 
called allowed transitions. 

The concept of allowed and forbidden transitions in the electric dipole mo
ment approximation can be discussed by using two approaches which are related 
to the fact that there are essentially two approaches to the treatment of intensities 
in the vibrational-rotational spectra of molecules. 

In the first approach, the linestrengths [Eq. (2.27)] are expressed in terms of the 
matrix elements of the true dipole moment operator over the vibrational-rotational 
wavefunctions which are obtained by a variational diagonalization of the matrix 
representation of the vibrational-rotational Hamiltonian, usually in the basis of 
the harmonic oscillator and rigid rotor wavefunctions [Eq. (3.10)]' 

In the second approach, the true dipole moment operator is transformed to an 
effective dipole moment operator by a contact transformation which in a chosen 
approximation removes all the off-diagonal terms from the expanded vibrational
-rotational Hamiltonian. The linestrengths are then expressed in terms of the matrix 
elements of the effective dipole moment operator over the harmonic oscillator and 
rigid rotor wavefunctions (see, e.g., refs1 •9). 

Let us first consider the first approach. Suppose for example that 

but among the terms 

ICm/cP)O)I.uFlcP~O» == <cPml.uFlcP~O» 
i 

(4.1) 

(4.2) 
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is at least one transition moment, say < <1>~0)1 JlFI<1>~O», which is different from zero 
[in Eqs (4.1) and (4.2), <1»0) are the zeroth-order wavefunctions and <1>m is the perturbed 
wavefunction corresponding to the energy level Eml 

In this case, the transition m ~ n becomes allowed through the mixing of the 
zeroth-order wavefunctions by a vibrational-rotational or anharmonic interaction 
(perturbation allowed or forbidden transition which "borrows" its intensity from 
the intensity of the allowed transition p -+ n). 

If the zeroth-order transition moment in Eq. (4.1) is different from zero, then the 
higher-order effects change only the intensities of the allowed transitions m ~ n 
but they do not lead to forbidden transitions because the m ~ n transition was 
already allowed in the zeroth-order approximation. 

Nevertheless, the experimental investigation of the intensity perturbations of the 
spectrum lines of the allowed transitions can provide useful results. For example, 
vibration-rotation interactions lead to intensity changes which provide useful infor
mation on magnitudes as well as relative signs of the transitions moments pertaining 
to different vibrational-rotational transitions (see, e.g., refs I6 . 17). 

As an illustration of this situation, let us consider the x-y Coriolis interaction 
between the nondegenerate (A) and degenerate (E) fundamental vibrational levels 
of a C 3v molecule 1 (Fig. 3). This interaction mixes states which are all accessible by 
allowed transitions from the ground state (Part 6). The interaction therefore cannot 
induce forbidden vibrational-rotational transitions but it certainly modifies intensi
ties of the allowed infrared bands I6 ,17. 

On the other hand, the same interaction leads to a new type of rotational transi
tions in the doubly degenerate vibrational state with the selection rules + I ~ -1, 
K + 1 ~ K - 1 which are not allowed by the usual selection rules (Part 6). It is 
obvious from Fig. 3 that this forbidden transition borrows its intensity from the 
allowed 11,0°; J, K) ~ 10,1-1; J, K - I) transition. 

This approach will be used in further discussion because it makes it possible to 
find the selection rules of forbidden transition quite simply. It is especially useful 

Fl(;. 3 

Energy level scheme for the x-y Coriolis 
interaction between a non degenerate and 
degenerate fundamental vibrational level of 
a C3v molecule. The forbidden transition 
with the selection rule + I-<c- -I, /'"K = 

= ± 2 is indicated by the bold arrow 
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in cases of resonances between interacting levels where the borrowing of intensities 
may become especially important. 

The second approach makes it possible to express contributions of the individual 
vibrational-rotational and anharmonic terms to the line strengths in a compact 
algebraic form and to classify forbidden transitions in a convenient way. 

In this case, the Hamiltonian ;Ie in Eq. (2.2) is subject to a vibrational contact 
transformation 1.9, which after the separation of the electronic problem and in the 
dipole moment approximation can be written in the form: 

:K = exp (is) Hvr exp (-is) - exp (is) flz exp (-is) E cos (rut) = 

= flvr - iizE cos (rut) . 

By expanding exp (is) in a power series, we obtain 

flvr = Hvr + i [5, HvrJ - 1[5, [5, HvrJJ + ... 
and 

iiz = flz + i [5, flzJ - 1-[5, [5, flzJJ + ... , 

(4.3) 

(4.4) 

(4.5) 

where [A, BJ = AB - BA and [A, [A, BJJ = A[ A, BJ - [A, BJ A are the cor
responding commutators. 

The transformation function 5 is chosen such that flvr is diagonal in the basis 
of the harmonic oscillator wavefunctions. For example, if we choose in the first 
approximation [Eqs (3.2), (3.3)-(3.8)J, 

(4.6) 
then 

(4.7) 

The transformation functions 530' 512 , and 521 remove the terms H30' H 12 , and 
H 21 , which are off-diagonal in v, from the first-order terms in the expansion of 
Hvr (cf. l ,9). The explicit expressions for these functions can be found in the litera
ture1.8,9. 

A part of the effective Hamiltonian flvr is then 

(4.8) 

where 

(4.9) 

are the centrifugal distortion coefficients. 
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There are terms in HR which are purely off-diagonal (in the rotational quantum 
numbers) in the rigid rotor approximation. Therefore it is possible to perform 
a purely rotational contact transformation which removes such terms from the 
effective Hamiltonian, 

(4.10) 

This second transformation brings jiz to the form 

jlz[ == exp (i5R) jiz exp (-i5R)] = IIl~e) AZa + IIl~oAz<z + 
<z <z 

+ I{i [51 1> ll~e)AZ2] + (Il~o + i [530 , Il~o]) Az<z} + i I([512 , Il~o)·z,] + 
<z <z 

+ [503 , AZ .. ] Il~e» + iI([512 , ll~e)Az<z] + [521 , ll~oAZ<z]) ... (4.11) 
<z 

The first sum on the right-hand side of Eq. (4.11) corresponds to the allowed purely 
rotational transitions due to permanent dipole moment (see Part 6 of this paper); 
the second sum corresponds to the allowed infrared fundamentals; the third sum 
is associated with the first overtones, combination and difference bands and with 
the forbidden rotational transitions in the degenerate vibrational states induced by 
vibrations (see Part 8); the fourth sum corresponds to forbidden pure rotational 
transitions induced by centrifugal distortion (Part 9). Finally, the last sum cor
responds to forbidden infrared fundamentals induced by Coriolis or centrifugal 
forces and forbidden lines in allowed fundamentals (for a more complete treatment 
see Tables VII and VIII in ref. 9 ; see also ref. 18). 

The same procedure could be used for the electric quadrupole or magnetic dipole 
moments but it turns out that in most cases this is not necessary. Because the 
corresponding transition probabilities are extremely small in comparison with those 
due to the electric dipole moment, it is sufficient to consider only the analogue to 
the first two terms on the right-hand side of Eq. (4.11) (see Part 7). 

It should be noted that the electric quadrupole and magnetic moments indeed 
induce forbidden transitions and do not merely modify the intensities of the 
electric dipole moment transitions. This is because they have different overall sym
metry selection rules with respect to inversion parity, which is a selection rule holding 
strictly (see Part 5). 

5. OVERALL SYMMETRY SELECTION RULES 

Before discussing the selection rules on the transitions which can be obtained from 
the symmetry considerations, let us briefly mention the symmetry groups which will 
be used throughout this paper. 
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We will use the Longuet-Higgins symmetry groups19 (see also refs1,20) of the 
permutations of the positions and spins of the identical atomic nuclei, and permuta
tion-inversion operations PE* = E*P (== p*), where E* is the operation of inversion 
of the positions of electrons and atomic nuclei say in the origin of the coordinate 
system. Note that for semirigid molecules, the Longuet-Higgins group of the energe
tically completely feasible operations is isomorphic with the point group of the 
equilibrium configuration of the atomic nuclei of the molecule (see, e.g., refs1,20 for 
more details on the concept of the permutation-inversion and point groups). 

We will also use the group of rotations about the space-fixed axes which go through 
the center of mass of the molecule [the external rotation group K(S)J. 

In the absence of external fields, the molecular Hamiltonian is invariant with 
respect to both groups and we will obtain useful selection rules on the allowed and 
forbidden transitions by considering the transformation properties of the wave
functions as well as of the electric and magnetic moments with respect to the opera
tions of both groups (see Appendix as for the discussion of the situation if the ex
ternal electric and magnetic fields are applied). 

In general, a transition moment for the electric or magnetic dipole operator, 

(5.1) 

can be different from zero only if it is invariant with respect to all the symmetry 
operations of the molecular symmetry group20. This overall symmetry selection 
rule can be expressed through the direct product of the symmetry species of the three 
quantities which appear on the left-hand side of Eq. (5.2): 

(5.2) 
or equivalently, 

(5.3) 

We discuss in section 5.1 the overall symmetry selection rules which can be obtained 
from the consideration of the transformation properties of the wavefunctions iP and 
the various moments fJ~e.m) which respect to the operations of the Longuet-Higgins 
symmetry groupsl,20. Selection rules which can be obtained from the use of the 
external rotation group K(S) will be discussed in section 5.2. 

5.1. Selection Rules Obtained with the Use of Permutation-Inversion Groups 

The overall symmetry selection rules (5.2) or (5.3) provide strong results on the 
allowed and forbidden transitions in the following sense. Suppose that a transition 
is forbidden by the overall symmetry selection rule on the basis of the symmetry 
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properties of the wavefunctions considered in a certain approximation. This result 
is independent of that approximation because the molecular Hamiltonian is invariant 
to all the symmetry operations of the molecular symmetry group1,20. Consequently, 
any matrix element of the type (cP'J HmnJcP"> [cf. Eq. (3.2)] can be different from 
zero only if cP' and cP" belong to the same symmetry species. In other words, the 
symmetry species of a wavefunction cP does not depend on the approximation in 
which it is obtained. 

It is important to understand that this result holds for the overall symmetry selec
tion rules pertaining to a specified wavefunction. For example, it holds for the 
allowed and forbidden transitions between the rovibronic states cPevr independently 
on the approximation in which cPevr is considered. However, if we want to obtain 
selection rules for transitions between the individual electronic, vibrational or 
rotational states separately, then the results do depend on the approximation in 
which cPevr is expressed (see Parts 8 and 9). 

Let us consider in more detail the transformation properties of the overall spin
-rovibronic wavefunctions cPevrs. We can write the expression for the complete wave
function [Eq. (3.13)] in the form 

(5.4) 

where the rovibronic wavefunction cPe• r depends on the coordinates of all particles 
(atomic nuclei and electrons) of the molecule with respect to the space-fixed system 
of axes and cPs depends only on the spin coordinates. 

It can be shown21 that the complete function cP is either symmetric or antisym
metric with respect to inversion E* whose effect on the space-fixed coordinates R. is 
defined as 

(5.5) 

that is 

(5.6) 

Similarly, if P2 is the permutation of the positions and spins of the two identical 
atomic nuclei, it can be shown21 that 

(5.7) 

where the upper sign holds for the permutation of the nuclei with half-odd spin 
(e.g., IH or 19F) and lower sign for nuclei with integer spin (e.g., 2H or 160). 

The space-fixed components of the electric dipole moment JlC;.d.>, electric quadru
pole moment JlC;.q.>, and of the magnetic dipole moment Jl~m.d.) transform as follows: 
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E*J.l~·d.) - /l~.d.) , PIi~·d.) +J.l~e.d.) , (5.8a) 

E*J.l~;~·) + J.l~";~.) , PJ.l~~;'!·) +J.l~";,!.) , (5.8b) 

E*/l~m.d.) = +J.l~m.d.) , PIi~m.d.) = +IL~m.d.) (5.8e) 

(P is now a general permutation operation). 

Eqs (5.8) follow from the definition of the various electric and magnetic momenta 
and from the definition of the effect of E* and P on the various space and spin 
coordinates [cf. Eqs (2.12), (2.14)-(2.16), and (5.5)]' Note that P permutes only the 
order of the terms in the expression for the various momenta, thus all of them must 
be invariant with respect to P. Also E* does not affect the spin coordinates. 

We obtain therefore the following overall symmetry selection rules for the allowed 
(+-» and forbidden (+t+) transitions between the quantum states with different inver
sion parities: 

A. Electric dipole moment selection rules: 

(5.9) 

B. Electric quadrupole and magnetic dipole moment selection rules: 

(5.10) 

Thus the electric dipole moment allowed transitions occur between states with the 
opposite inversion parities while they are forbidden between states with the same 
parity. Weak transitions between the levels having the same parity are of course 
possible through the electric quadrupole or magnetic dipole moment selection rules 
(Fig. 4). 

It should be noted that because the spin wavefunction cPs [Eq. (5.4)] is invariant 

-..---..;:-
I ';:~"="%. 

,~~" 
:Y 

i" 
-~-

FIG. 4 

Allowed (full arrows) and forbidden (dashed 
arrows) transitions in a three-level system 
with the indicated inversion parity of the 
wavefunctions. The electric dipole moment 
induces allowed transitions between the 
states with opposite parity while the electric 
quadrupole or magnetic dipole moments 
induce forbidden transitions between the 
states with the same parity 
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with respect to E*, we would obtain the same overall symmetry selection rules if we 
considered the rovibronic wavefunction <Pevr(R) instead of the complete spin-rovi
bronic wavefunction <Pevrs. 

On the other hand, the transformation properties with respect to permutation P 
of the rovibronic wavefunctions <Pevr are different from those of the complete spin
-rovibronic wavefunctions <Pevrs. This can be illustrated on the following examples, 
which will also make it possible to explain the important concept of spin statistics 
isomers, i.e. of the ortho and para-modifications of molecules. 

Let us first consider the molecule of water, H20. It belongs to the C2v point group 
which is isomorphic with the complete permutation-inversion groupl,20 of H20. 
If (1. denotes the value + 1/2 of the proton ·spin projection and 13 the value - 1/2, 
and the two protons are labelled as 1 and 2, there are four proton spin states (1.1(1.2, 
(1.1132' /31(1.2' 131132' The structure of the reducible representation in the basis of the 
proton spin functions <pP.s. can be found to be 

(5.11) 

The spin-rovibronic wavefunctions <Pevrs must change sign with respect to permuta
tion (12), 

(12) <Pevrs = - <Pevrs (5.12) 

and transform as follows with respect to E*: 

E*<Pevrs = ± <Pevrs . (5.13) 

Thus the spin-rovibronic wavefunctions <Pevrs must belong either to the Bl or B2 
species of the C2v group. Species of the rovibronic wavefunctions <Pevr of H20 are 
AI' A 2 , B 1 , B2 • We have therefore the following compatibility conditions for the 
spin-rovibronic wavefunctions <Pevrs : 

Proton spin 
states <pP.s. 

Rovibronic 
states <P evr 

Spin-rovibronic 
s ta tes <P evrs 

(5.14) 

The obvious result is that the spin states At are not compatible with the rovibronic 
states At or A2 and the spin states B2 are not compatible with the rovibronic states 
B1 or B2 • Proton spin statistical weights of the energy levels of H 20 are therefore 

(5.15) 
(see also Table I). 
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From Eqs (5.8) we find that the symmetry species of the individual moments are 

r("(e. q .») - A r-FF' - 1, (5.16) 

Because Jl<;.d.) is independent of the spin coordinates, we can write for the transition 
moment of the electric dipole moment operator 

<€fJ' I (e.d')/€fJ" > - <€fJ' I €fJ" > <€fJ' I (e.d')/€fJ" > oyr. Jl.F eYrs - p... p.s. evr JlF evr' (5.17) 

Because of the orthogonality of the spin wavefunctions, the condition €fJ~.s. = €fJ~.s. 
must be satisfied for the allowed transitions (analogous condition must be satisfied 
for the electric quadrupole and magnetic dipole). 

TABLE I 

Possible combinations of the proton spin states with the rovibronic states in H2• H20. and NH3 

Proton spin Rovibronic Spin- Spin 

statesa states rovibronic Modification statistical 
states weight 

H2 (Dooh group) 

.r+ ® .r- .r;} 9 9 ortho 3 .r+ ® .r+ .r+ 
9 u u 

.r+ ® .r+ .r:} u 9 para 1 .r+ ® .r- .r-u u 9 

H 20 (e2V group) 

At ® Bt Bt} ortho 3 At ® B2 B2 
B2 ® Al B2} 1 
B2 ® A2 Bl 

para 

NH3 (D3b group) 

A; ® A~ A'} A; ® A; A; ortho 4 

E' ® E' E A'} 
E' ® E" A; para 2 

E 

a For H2 • the structure of the reducible representation of the proton spin states is 3E: + E;i • 
for H20 3Al + B2. for NH3 4Al + 2E'. 
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Let us now consider the overall symmetry selection rules which follow from Eq. 
(5.2) for the allowed and forbidden transitions between the rovibronic states of H20: 

A. Electric dipole moment selection rules: 

B. Electric quadrupole and magnetic dipole moment selection rules: 

A+++B. 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

We can see that the transitions which are forbidden by the electric dipole moment 
selection rules (5.19) are relaxed by the electric quadrupole or magnetic dipole 
moment selection rules (5.21), although these forbidden transition will certainly be 
by many orders of magnitude weaker than the Al - A2 or BI - B2 transitions. 

On the other hand, we see from Eqs (5.20) and (5.23) that the A +++ B transitions 
are not allowed by the electric dipole nor by the quadrupole moment or the magnetic 
dipole moment selection rules. We can therefore distinguish between the ortho
and para-modifications (spin statistics isomers) of H20 (cf. Table I). This is a general 
phenomenon (cf. Fig. 5); usually, the modification with greater statistical weight 
is called the ortho-modification, that with the smaller weight the para-modification 
(cf. Table I). 

The ortho-para transitions, however, are not absolutely forbidden for the fol
lowing reasons. For example for H20, the overall symmetry selection rules for the 
allowed transitions between the spin-rovibronic states C/>evrs is obviously 

(5.24) 

which relaxes the selection rules according to which the ortho-para transitions are 
strictly forbidden (cf. Table I), This is not in contradiction with the previous example 
as can be shown by the following discussion. 

Let us consider two energy levels of H20 which have the same symmetry species 
of spin-rovibronic wavefunctions, say B2 , but which belong to the ortho- and para
modifications of H20 and therefore have different species of the rovibronic states 
(Table I). Then a mixing of both wavefunctions is possible through a spin-rovibronic 
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interaction. As a consequence of this mixing, the new wavefunction of the para
-modification will be 

(5.25) 

where lei ~ 1 is the coefficient of the mixing. 

The ortho-para transition becomes allowed through this interaction, as can be 
seen from the corresponding expression for the transition moment: 

[<cPp ••• (B2) cP~vlAI)1 + c<cPp.s.(A 1) cP~vlB2)]IIL~·d·)lcPp.s.(AI) cP~vlBl» 

= c<cP~vlB2)1 J1~e.d.) IcP~vr(BI» . (5.26) 

~--.-.--.---------------, 

K-D K=' K=2 K=3 

or/ho pora para orlho 

FIG. 5 

Ground state and v2 excited state energy 
levels of ammonia, NH3 . Allowed transi
tions are indicated by full arrows, forbidden 
transitions (induced by rotation) are indi
cated by dotted arrows4 

ortho-NH3 

J = 2 ___ ~rP.""~,,,"{_1 )~vr(A'~) 
K=D : ~ 

FIG. 6 

I 
I 6J=+1 
I 6K=-1 
: (forbidden) 

I 

A' 2 

pora-NH3 

~ 5 IE') ~.,,,(E"l 

Alf ~;;.; 
II (allowed) 

para-NH3 

J=2 
K=l 

J=1 
K=1 

Extremely weak spin-rotational interactions 
between the levels with J = 2, K = 0 and 
J = 2, K = 1 with the same overall sym
metry Ai of the spin-rovibronic wavefunc
tions can induce transitions between the 
ortho- and para-modifications of ammonia, 
NH3 
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A similar situation is illustrated by Fig. 6 for the ortho-para transitions in ammonia, 

NH 3 · 

For nonlinear molecules with equivalent identical nuclei an important pathway 
leading to equilibration of spin statistics isomers is provided by wavefunction mixing 
induced by the spin-rotation interaction and in some cases by the spin-spin inter
action. For molecules like water, H 20, or formaldehyde, H 2CO, the rapidity of 
equilibration is sensitive to the exact rotational energy level pattern. The spin-rotation 
interaction may be very important if there is an accidental near degeneracy of the 
right sort. Then most of the isomerization "tunnels" through the near-degenerate 
states22 - 26. 

For Hz, the ground state energy levels with J even belong to para, with J odd to 
ortho-modifications. As suggested already by Dennison24, the even and odd rota
tionallevels of H2 do not equilibrate with each other. Similarly, the ortho- and para
-modifications of ammonia, NH3 , equilibrate extremely slowly. In methane, CH4 , 

there are three spin statistics isomers, which equilibrate rapidly because of the large 
spin-rotation interaction26. 

However, it should be noted that for example in H20, the Bl - Bl or B2 - B2 
ort ho-para transitions are strictly forbidden because they violate the inversion 
parity selection rule (5.9). This can also be described in terms of the quantum numbers 
associated with the symmetry operations. Thus parity with respect to inversion [Eq. 
(5.6)] is an extremely good quantum number because there are no spin interactions 
which could mix states with opposite inversion parity and the rules (5.9) are rigorous 
selection rules for the electric dipole moment transitions. 

Theory of the spin-forbidden transition probabilities requires still further 
work 2 7 ,28 and the observation of the corresponding spectrum lines is a challenge 
for experimentalists. 29 

J.t should be mentioned that selection rules for quantum transitions between 
ortho- and para-modifications due to molecular collisions are essentially the same 
as the selection rules for radiative transitions30 (see also Part 9.1). Thus nonequi
librium mixtures of ortho- and para-modifications of molecules with slow equilibra
tion due to radiative processes may stay in the thermally nonequilibrium stage for 
months or even years without significant changes. 

5.2. Selection Rules Obtained with the Use of External Rotation Group 

The previous discussion will now be completed by using the external rotation group 
K(S), i.e. the group of rotations around the space-fixed axes. In this way we obtain 
selection rules on the quantum numbers which are associated with these rotations. 

If we neglect the spin moments, such a quantum number is J, the quantum number 
of the molecular rotational momentum1 • If k is the quantum number of J z , the 
projection of the rotational momentum along the molecule-fixed axis z, we have 
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2J + 1 rotational wavefunctions IJ, k), IJ, k - 1), ... , IJ, -k) which form the 
basis of the irreducible representation D(J) of the group K(S) (cf. refs20.21). Ac
cording to the rules which can be obtained for the irreducible representations of 
K(S), it holds that 

(5.27) 

only if J" - J' = 0, ± 1 (but J" - J' = 0 does not hold for J' = J" = 0). 
Because /lz transforms according to the representation D(l) of the K(S) group, we 

obtain the following selection rule for the isolated molecule in the absence of external 
fields: 

IlJ = 0, ± 1 (J' = 0 +# J" = 0) , (5.28) 

where the IlJ = 0 transitions give rise to the Q branches, IlJ = + 1 to the R branches 
and IlJ = -1 to the P branches. 

J is a rather good quantum number, because vibrational-rotational interactions 
cannot mix states with different J. This follows from the fact that the Hamiltonian 
Hvr is invariant with respect to the operations of K(S), i.e., it belongs to the renre
sentation D(O). Thus 

(1', k'i HvrlJ", k") "# 0 (5.29) 
only if J' = J". 

This holds, however, only if the very small spin-rotation and spin-spin inter
actions are neglected. A rigorous quantum number in free space is F, the quantum 
number of the total angular momentum of the molecule (a vector sum of the rota
tional and spin momenta). Thus instead of Eq. (5.28), we have 

IlF = 0, ± 1 (F' = 0 +# F" = 0) . (5.30) 

Sometimes in the literature J is understood to be the quantum of the total angular 
momentum (including the spin momenta) but we prefer to distinguish the spin 
contributions by using20 F. 

6. APPROXIMATE SELECTION RULES FOR THE VIBRATIONAL 
AND ROTATIONAL TRANSITIONS 

The overall symmetry selection rules discussed in Part 5 are certainly useful because 
they hold rather rigorously. Nevertheless, it is convenient to have also approximate 
selection rules for transitions between the electronic, vibrational, and rotational 
states. If the harmonic oscillator-rigid rotor approximation is used [Eq. (3.10)], the 
effective electric dipole moment flz [Eq. (4.11)] is approximated as 

flz( == /lz) == I I /l~J . (6.1) 
a:=.l.,y,% m== 0,1 ,2 , ... 
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The expression for the transition moment can be then written in the basis of the 
zeroth-order wavefunctions as 

a==x,Y,z 

+ I(aj!a/aqk)e <<p~1 qkl<p~> + t I(a2j!a/oqkoql)e <<p~1 qkqll<p~) + ... ] x 
k kl 

(6.2) 

Eq. (6.2) can be used to obtain various approximate selection rules on the allowed 
vibrational-rotational (<p~ # <p~) and purely rotational (<p~ = <p~) transitions. 

From the orthogonality of the spin functions we obtain that the transition moment 
in Eq. (6.2) can be different from zero if 

(6.3a) 

and 

<p~s = <p~s' (6.3b) 

i.e., we have the following selection rules for the allowed changes of the quantum 
numbers of the electron (S) and nuclear (1) spins: 

ilS = 0, 

M = O. 

(6.4a) 

(6.4b) 

If <p~ # <p~ (vibrational-rotational transitions), the first term in the square brackets 
on the right-hand side of Eq. (6.2) vanishes and the permanent dipole moment j!~.) 
does not affect the intensity of the vibrational-rotational lines. It is the change of the 
electric dipole moment during the vibration [(OJ!a/aqk).' (a2j!,,/oQkoql)e etc. terms] 
which controls this transition probability. 

The first-order vibrational transition moment can be different from zero, 

(6.5) 

only if the following condition is satisfied20 : 

(6.6) 

where r(Ta) is the symmetry species of the coordinate of translation T". (IJ( = x, y, z) 
which is the property of the molecular symmetry group. 
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This is the symmetry selection rule for the allowed vibrational transitions according 
to which a vibrational transition can occur between the vibrational states 4">~ and 
4>~ if the direct product of the symmetry species r( 4">~) and r( 4">~) contains the sym
metry species of the coordinate of translation Ta. 

Furthermore, we find that in the harmonic approximation for 4">v, 

(6.7) 

which gives the well known approximate selection rule for the most intense vibra
tional transitions. 

The second derivative of the dipole moment in Eq. (6.2) describes the so-called 
electrooptical anharmonicity; it will be discussed in more detail later (Part 8). 

Vibrational transitions are accompanied by rotational transitions; selection rules 
for the latter are obtained from the following condition for an allowed rotational 
(4)~ = 4">~) or vibrational-rotational (cp~ "# CP~) transition: 

(6.8) 

For symmetric top molecules, we obtain from the explicit expressions for the sym
metric top rotational wavefunctions and AZ~ the following selection rules1 •20 : 

Ak = ° for ~ - -
IJ. - .... (6.9a) 

and 

Ak = ± 1 for IX = X, Y (6.9b) 

with AJ = 0, ± 1 (the k = ° ~ ° transition is not allowed for J = 0). This result 
holds if the z axis is identified with the rotation axes of the highest symmetry. 

In a symmetric top molecule, the direction of the permanent dipole moment /1;e) is 
always along the z axis (cf. Fig. 7). Thus the selection rules for the pure rotational 
spectra are 

AJ = 0, ± 1; Ak = ° . (6.10) 

Tn a symmetric top molecule, normal vibrations induce a dipole moment either 
along the z axis or perpendicular to it (cf. Fig. 7). In the former case we obtain selec
tion rules for the allowed vibrational-rotational transitions in a parallel band which 
are the same as those in Eq. (6.10); in addition we have of course Av "# 0. Perpendi
cular vibrational-rotational bands have the following selection rules: 

AJ = 0, ± 1; Ak = ± 1 . (6.11) 

The situation for linear molecules is essentially the same as for symmetric top mole-
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cules; instead of the rotational quantum number k we must consider the vibrational 
quantum number I of the vibrational angular momentum which is induced by the 
deformation vibration (Fig. 8). 

Thus we have the selection rules for the allowed vibrational-rotational transitions 
in a parallel band of a linear molecule: 

AJ = 0, ± 1; Al = 0 (AJ = 0 is not allowed for I = 0) (6.12a) 

and 

AJ = 0, ± 1; Al = ± 1 (6. 12 b) 

for a perpendicular band of a linear molecule. 
The only selection rules which can be found for spherical top molecules are 

AJ = 0, ±1 (6.13) 

(besides selection rules which are the analogue of the ± I selection rules for sym
metric top molecules; see Parts 8.2 and 9.2). 

Since forbidden transitions are of lesser importance for asymmetric top molecules, 
we will not discuss here the selection rules for the rotational transitions in these 
molecules1 . 

As it was discussed in the previous section, from the various quantum numbers 
mentioned in this section, only the quantum number J of the rotational angular 
momentum is a nearly good quantum number. A rigorous quantum number in free 
space is F with the selection rules given by Eq. (5.30). 

On the other hand, k is 110t a good quantum number because the symmetry leading 

f-ix 
- - - --{:3;-

H 

FIG. 7 
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The equilibrium configuration of the PH3 

molecule and the directions of the permanent 
dipole moment tl~e) and of the moment 
induced by rotation around the z axis (fix) 

Collect_ Czech. Chem. Commun. (Vol. 54) (1989) 

y x y I~ )e~O 
O+----< •• ~---C» - - - z 

FIG. 8 

The antisymmetric valence vibration in 
a linear molecule induces a dipole moment 
which is parallel with the z axis; the deforma
tion vibration induces a dipole moment 
which is perpendicular to z 



2584 Papollsek: 

to it is that of the molecular geometry; the k selection rules are relaxed by the vibra
tional or rotational centrifugal distortion of the molecular geometry (Part 9). 

7. FORBIDDEN TRANSITIONS INDUCED BY THE ELECTRIC QUADRUPOLE 
AND MAGNETIC DIPOLE MOMENT 

As it was discussed in Part 5, the electric quadrupole and magnetic dipole moments 
induce transitions with different overall symmetry selection rules in comparison 
with those induced by the electric dipole moment. We will now discuss in more detail 
these typical forbidden transitions, especially from the point of view of their selection 
rules for the various vibrational and rotational quantum numbers (a detailed discus
sion of these selection rules for linear molecules can be found in ref. 31 ). 

7.1. Forbidden Transitions due to the Electric Quadrupole Moment 

The electric quadrupole moment is a second rank tensor having nine components 
with respect to the space-fixed axes X, Y, Z: 

(7.1) 

[we change the notation from Ilr;i~') to Qn" to avoid the upper index (e.q.) in further 
treatment; QFF' is frequently used in the literature to denote components of the 
electric quadrupole moment]. 

In order to obtain the selection rules for the various vibrational and rotational 
quantum numbers, we proceed in analogy with the treatment of the electric dipole 
moment described in Parts 5 and 6. This means that we first express QFF' in terms 
of the components fl. p of the electric quadrupole moment with respect to the mole
cule-fixed axes x, y, z: 

QFF' = L Q,/;AFJF'II . (7.2) 
·.fJ 

If we integrate out the electronic coordinates, we obtain in analogy with Eq. (3.17) 

Q.i =< <pel fl.pl<pc» = Q~(/ + 'fJtJQafl/iJq,.)c qk + higher order terms, (7.3) 
k 

where Q~':/ is a component of the permanent electric quadrupole moment, (o Qap/2qk). 
characterizes the changes of the quadrupole moment by the vibrations etc. 

We obtain therefore that the pure rotational spectra induced by the electric quadru
pole moment are controlled by the terms 

Qle)<""i' . I,,),,) 
.p "'rl/'F/'F'/II"r (7.4) 
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while the vibration-rotation spectra are controlled by the terms 

[(oQap/oqk)e <cp~\ qdcp~> + -lz(02Qap/OqkOql)e <cp~\ qkql\CP~> + ... ] x 

x <cP;\ AF~AF'P\CP~> . 
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(7.5) 

Selection rules for quadrupole transitions are identical with those obtained for the 
Raman spectra if we consider instead of QaP the component of the molecular polarisa
bility tensor a~p. For example, the component QaP of the electric quadrupole moment 
transforms by the symmetry operations like the product of the coordinates of transla
tion, TaTp, i.e., like the component a~p of the molecular polarisability tensor. Thus 
the symmetry selection rule for the vibrational transitions induced by the electric 
quadrupole moment can be written as 

(7.6) 

Selection rules on the rotational quantum numbers follow from the matrix elements 
of the direction cosine products [Eqs (7.4) or (7.5)], thus they are the same as the 
selection rules for the Raman spectra 32,33. 

For example, the selection rules on the rotational quantum number Fare 

f..F = 0, ±1, ±2 (F' = O+#F" = O,F' = !+#F" = -lz, F' = O+#F" = 1). (7.7) 

The f..F = ° transitions give rise to the Q branches, f..F = + 1 to the R branches, 
f..F = + 2 transitions to the S branches, f..F = -1 to the P branches, and the f..F = 
= - 2 transitions to the a branches. 

It should be noted that for symmetry reasons the off-diagonal elements Q~p 

('l. =1= fi) can be identically equal to zero. For example, for linear and symmetric top 
molecules and for asymmetric top molecules of C2v symmetry, we have only the 
diagonal elements Q" (a = x, y, z); see ref. 34 for details. For a linear molecule, 
Qxx = Qyy = - Qzz/2 (the z axis is the Coo rotation axis) and there is only one 
independent element of the molecular electric quadrupole tensor34 : 

Q,a = -e I<0\3rxt - r;\O> + e IZi3rx~ - ri), CI. = x, y, z, (7.8) 
i j 

where e is the electron charge, rs is the position vector with respect to the molecule
-fixed axis system of the s-th particle (electron or atomic nucleus), Zj is the atomic 
number of the j-th nucleus. The first term on the right-hand side of Eq. (7.8) is the 
electronic contribution to the quadrupole moment averaged over the ground state 
electronic wavefunctions while the second term is the nuclear contribution. 

It might seem that because of the coincidence of the ordinary Raman selection 
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rules with the electric quadrupole moment selection rules, the forbidden quadrupole 
transitions are not of large importance because it is certainly easier to measure 
ordinary Raman lines than the extremely weak quadrupole radiation. Nevertheless, 
measurement of these forbidden transitions played an important role in the history 
of molecular spectroscopy, namely because of the fact that the simplest molecule, 
H2, does not have a permanent electric dipole moment; neither can its vibration 
induce one. Thus the only possibility of observing a pure rotation or a vibration
-rotation spectrum of a homo nuclear diatomic molecule is through the electric 
quadrupole interaction. The quadrupole spectrum of H2 is therefore of considerable 
importance in astrophysics, because it allows the determination of H2 abundancies 
in astronomical sources, in particular in planetary atmospheres35 and also in the 
interstellar molecular clouds36 - 38• 

The astrophysical importance of the electric quadrupole rotation-vibration spectra 
has been recognized half a century ag039 .40. In 1949, Herzberg41 ,42 observed for 
the first time the electric quadrupole lines S(O), S(1), S(2), and Q(l) in the 2 +- 0 
and 3 +- 0 vibrational-rotational bands of H2 using the equivalent of the optical path 
length of about 50 km at 1 atm pressure. The observation of the electric quadrupole 
vibrational-rotational transitions in the 1 +- 0 band has been reported much 
later43 -47 while the pure rotation quadrupole spectrum of H2 was observed for the 
first time in 1978 (ref.48, see also refs44,45). 

These measurements provided the values of the rotational and centrifugal distor
tion constants in the ground and excited vibrational states as well as band origins 
of H2 (Vl .... 0 = 4161'1782, v2 .... 0 = 8087'000, V3 .... 0 = 11 782·355 em-I, ref. 45) with 
much better accuracy than obtained from Raman spectra of H2 (cf. ref.49). Equally 
interesting is the information on the quadrupole moments which can be obtained 
from the intensity measurements of the quadrupole lines45 ,48 because this makes it 
possible to determine the various abundances of molecular hydrogen in the planetary 
atmospheres and in the interstellar clouds. 

It is easy to see that for H 2 , Eq. (7.8) can be written as 

(7.9) 

where R is the internuclear separation and z is the coordinate of one of the electrons 
(both electrons give the same averaged contribution); it should be noted that some 
authors define the quadrupole moment as Q* = Q/2. 

It turns out that the various matrix elements of Q are not only strongly dependent 
on Av = v' - v" but also on the rotational quantum number J because of the vibra
tional-rotational interactions (Table II). 

The hydrogen molecule attracts of course the attention of quantum chemists who 
have done many ab initio calculations of the quadrupole moment of the H2 molecule 
and of its matrix elements between various vibrational-rotational states52 ,S3. These 
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calculations are in a good agreement with the experimental values and are useful 
for predicting intensities of the quadrupole lines which have not yet been measured 
in the laboratory. 

The observed as well as calculated values of the quadrupole moment elements 
indicate that the intensity of quadrupole lines is extremely small. For example, the 
ratio of the intensity of the S(O) quadrupole line in the fundamental band of H2 to 
the intensity of the R(O) line of the fundamental band of Hel was found43 to be 1·1 . 
. 10- 8 . 

Nevertheless, the extremely long optical paths in the interstellar hydrogen clouds 
as well as the high excitation temperatures make it possible to observe beautiful 
quadrupole emission spectra of interstellar H2 (Fig. 9). 

The electric quadrupole vibrational-rotational or rotational spectra for other 
molecules have been measured only recently. For example, the quadrupole spectra 

TABLE II 

Experimental and calculated values of the quadrupole moment matrix elements of H2 (seea) 

~ 

I<v' ; J'I QIVIl; r)lexp <v'; J'I QIV"; r)calc 
Line 

vexp 
cm- 1 a.u. a.u. 

0-<-0 
S(3) 1034·6702 0·982 0·989 

1+-0 
S(O) 4497·8403 0·153 0·157 
S(I) 4712'9050 0·147 0·144 
S(2) 4917'0100 0·141 0·132 
S(3) 5 108·4051 0·123 0·119 
Q(1) 4 155·2579 0'153 0·176 
Q(2) 4143-4625 0·166 0·176 
Q(3) 4125·8755 0·165 0·177 

2-<-0 
S(I) 8604·2133 0·0235 -0,0237 
Q(I) 8075·3045 0·0236 -0,0225 

3+-0 
S(I) 12265'548 0'00421 0'00427 

4+-0 
S(O) -0,000865 

a Experimental data taken from ref.45 (cf. also refs51 •53) except for the 0 +-0 transition for 
which data have been taken from ref.48 ; note that only the absolute value of the quadrupole 
moment matrix element can be obtained from the experimental intensities. Calculated values 
taken from ref. 52. The conversion factor between the atomic unit (a.u.) and Coulomb. (meterl 
(C m 2) is 1 a.u. = 4'486499.10- 40 C m2 • 
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of HD have been measured for the first time by McKellar 54 in 1974, of D2 by McKel
lar and Oka5S in 1978. The first observation of vibrational and rotational quadrupole 
transition in any molecule other than hydrogen have been reported in 1981 for the 
fundamental band of O2 at 1 580 cm - 1 (ref. 56). 

7.2. Forbidden Transition due to the Magnetic Moments 

The component p.~m) of the molecular magnetic moment with respect to the space
fixed axis Z can be expressed in terms of the components ji~m) (ae = x, y, z) along the 
molecule-fixed axes in the same way as the component of the electric dipole moment 
[Eq. (3.14)]: 

p.(m) = " i/(m) ; 
Z L."'" 'Z,,· (7.10) 

a=x,Y,z 

While the component /lIZ of the electric dipole moment transforms like the coordinate 
of translation, TI% [cf. Eq. (6.6)], the components ji~m) transform like the com-
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Infrared emission of the Q branch of the 1-0 electric quadrupole H2 band in the Orion nebula 
(according to ref. so) 
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ponents of the rotational coordinate R", [cf. Eq. (2.16)]' Thus by proceeding in the 
same way as for the electric dipole moment in Part 6, we find the symmetry selection 
rule for the vibrational transitions induced by the magnetic dipole moment 

(7.11) 

The species of r(R",) can be found in character tables for the irreducible representa
tions (it is the property of the symmetry group and therefore the same for all mole
cules belonging to that group). 

Selection rules for the rotational quantum numbers are determined by the matrix 
elements of the direction cosines )'z!% in Eq. (7.10); they are therefore the same as 
those induced by the electric dipole moment (Part 6). 

Magnetic dipole moment transitions arc particularly important for homonuclear 
diatomic molecules for which electric dipole infrared or microwave transitions are 
forbidden. From the definition of the magnetic moment [Eq. (2.15)] we see that 
magnetic dipole transitions within an electronic state may arise when either A =I: 0 
(A is the quantum number of the electronic angular momentum) or S =I: 0 (S is the 
quantum number of the total electrone spin). This is a condition which is satisfied 
by some stable diatomics and many radicals in their electronic ground or quasi 
ground states. 

A special feature is that the transition intensities do not contain unknown param
eters like transition dipole moments [cf. Eq. (2.15)], thus absolute intensities of 
magnetic dipole moment transitions are predictable. We can see also from Eq. (2.15) 
that there is no component of the vibrational angular momentum for a diatomic 
molecule and hence the vibrational dependence of the magnetic dipole moment is 
extremely small. Thus we can expect that the magnetic rotational transitions will 
have much larger intensities in comparison with the magnetic vibrational-rotational 
transitions. 

A well known example of a molecule with a measurable magnetic dipole rotational 
spectrum is oxygen, 0.:. The ground electronic state of O 2 is X3~;;, which satisfies 
the condition S =1= 0 for magnetic moment induced spectrum (A = 0, S = 1). In 
Hund's case u (ref. 57), the angular momentum of the rotation of the nuclei and 
the angular momentum of the orbital motions of electrons couple to form the resultant 
angular momentum N. The magnitude of N is defined by the quantum number N; 
N = i-fl.IAI + 1. ... The spin angular momentum S will combine with N to give 
the total angular momentum F whose magnitude is defined by the quantum number 
F = ;'Ii + S, N + S - 1, ... , IN - SI [see also Eq. (5.30)]. 

Thus for S = 1, each rotational level of O 2 is split into three components by the 
spin-spin and spin-orbital interactions with the selection rules for F given by Eq. 
(5.30) (cf. Fig. 10). 

The first measurement of a rotational transition in the ground vibrational state 
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of O 2 with high-resolution technique has been reported by McKnight and Gordy58 

in the submillimeterwave region (Fig. 10). The fine-structure spectra of O 2 have 
been later extensively studied both experimentally and theoretically. For example, 
Amano and Hirota59 observed the microwave spectrum of O2 in the first excited 
vibrational state while Mizushima ct al.60 observed many transitions at 430 GHz 
using the technique of laser magnetic resonance. 

Rovibrational magnetic dipole transitions are forbidden because the magnetic 
moment has no dependence on the internuclear distance. As discussed recently by 
Balasubramanian and Bellary61 (see also ref. 59), some intensities can result from 
centrifugal and spin-orbital mixing effects but they have not yet been observed 
in the spectra. Reid et al. 56 have not been able to observe magnetic induced transi
tions to the first excited vibrational level of O 2 although they observed the electric 
quadrupole transitions to that level. 

Because the flF = 0, ± 1 selection rules are the same for magnetic as well as electric 
quadrupole transitions and both types of transitions have the same inversion parity 
selection rules, it is a question how they can be distinguished. In quadrupole transi
tions, branches obeying flF = ±2 appear in addition to those with flF = 0, ± 1 with 
similar intensities. Therefore, the presence of flF = ± 2 branches with intensities 
similar to flF = 0, ± 1 may be the only practical criterion to rule out any magnetic 
dipole contribution to the intensities because usually the magnetic dipole moment 
contribution exceeds that of the electric quadrupole moment62 . 

Magnetic dipole moment transitions (as well as electric quadrupole transitions) 
are important also in electronic spectroscopy and have been observed in many 
rovibronic bands in diatomic molecules63 •64• Magnetic moment transitions in the 
rovibronic spectra of a polyatomic molecule have been observed for the first time 
by Callaman and Innes65 in formaldehyde, H2CO (a weak 0-0 band of the 350 nm 
system). 

Molecular magnetic moments play an important role in the theory of optical 
activity (and hence in the spectra of circular dichroism) because the rotational 
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strength of an optically active material is proportional to the product of the electric 
and magnetic dipole moment matrix elements66 •67• This is, however, another story 
which will not be discussed here. 

8. VIBRATIONALLY INDUCED ROTATION TRANSITIONS 

Let us consider again the expansion of the electric dipole moment in terms of the 
normal coordinates of vibration q [see Eqs (3.18) and (4.11)]' We know already that 

(8.1) 

only if f1~e) ¥= 0 and 4>~ = 4>;, i.e., the allowed pure rotational spectra have molecules 
with a permanent dipole moment. 

We know also that if the second term on the right-hand side of Eq. (3.18) is dif
ferent from zero, 

(8.2) 

a vibrational transition with the selection rule Av = ± 1 is allowed (such a transition 
for example from the ground vibrational state gives rise to a fundamental band). 

Let us consider what happens if 

(8.3) 

First of all we see that this term gives a possibility to observe transitions with 
AVk = ± 1, Av, = ± 1 if k ¥= I or dVk = ±2 if k = I (in the first case we have 
a combination band for a transition from the ground state or the first overtone if 
Ark = ±2). In our classification of the allowed and forbidden transitions we might 
consider these transitions as forbidden (allowed by the electrical anharmonicity) but 
such a terminology is certainly not used for the combination band or first overtones 
[as well it is not used for the vibrational-rotational transitions which are due to the 
other higher-order terms on the right-hand side of the expansion (3.18)]' 

There is, however, another possibility that the term on the left-hand side of Eq. 
(8.3) gives rise to forbidden transitions. If qk = qj, then the condition 

(8.4) 

can be satisfied for 4>~ = <1>;, i.e., the molecule can have a purely rotational spectrum 
even if it is nonpolar. 

This possibility has been for the first time discussed in 1953 by Mizushima and 
Venkateswarlu68 and since that time (but much later) such spectra have been ob
served in the microwave and infrared-microwave double resonance spectra of many 
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molecules. It seems appropriate to describe this type of forbidden transitions as 
rotational transitions which are induced by vibration. * 

In this paragraph, we will first discuss the conditions which must be satisfied for 
a molecule to have a rotational spectrum and then we review the most important 
experimental work on the detection of these transitions. Following Mills, Watson, 
and Smith 71, we first specify general symmetry requirements on these transitions. 
The transitions considered here are the rotational transitions within a particular 
vibrational level whose intensities are due to nonvanishing integrals of the type 

(8.5) 

The symmetry condition for this integral to be nonzero is [Eq. (6.6)] 

(8.6) 

Note that the direct product r ® r of the irreducible representation r by itself 
consists of the direct sum of the symmetric square [r2] and antisymmetric square 
{r2}. For example, if tPa, tPb form the basis of the doubly degenerate representation, 
the combination tPatPb - tPbtPa forms the basis of {r2}. Thus only the symmetric 
square [r2] has to be considered in futher treatment [Eq. (8.7)]' 

Depending upon the fulfilment of this condition, molecules can be divided into 
the following two categories: 

(i) If the equilibrium configuration of the molecule belongs to a point group 
in which the symmetry species of the three translations are non-totally symmetric 
(e.g. D3h , D2d or Td), the molecule cannot have a purely rotational spectrum in a non
degenerate vibrational state (i.e., also in the ground state), because the square of the 
nondegenerate symmetry species is alw.ays totally symmetric. They can have, how
ever, a purely rotational spectrum in the degenerate vibrational state induced by 
vibrations because only in this case the square of the representation (rv)2 can contain 
the (non-totally) symmetry species of fl~. 

This is the most important case because such molecules cannot have a permanent 
dipole moment [fl~e) '# 0 immediately implies r(flex) E An but they may have a pure 
rotation spectrum excited by vibration in the degenerate vibrational state (for ex
ample, BCI3 , CH4 , CF4 , SiH4 or CF4 ), 

It should be noted, however, that not all molecules in which all r(flex) are non
-totally symmetric can satisfy condition (8.6). For example, molecules with a center 
of symmetry (e.g., spherical top molecules Oh or linear molecules Dcoh) can never 

* This prediction was for the first time verified by Uehara et a1.69, who observed two com
ponents of the p+ (7) transition in the v3 band of CH4 by using a Zeeman-tuned He-Ne laser as 
a source and showed one of them to be Stark sensitive (see also ref. 70). 
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satisfy condition (8.6) because (r v)2 contains only g (gerade) species (u ® u = g) 
while the species of P.a must have u (ungerade). Such centro symmetrical molecules 
C:>'11 never have a pure electric dipole rotational spectrum irrespective of the vibra
tional state (cf. however the effect of free internal rotation in ethane-like molecules 
discussed in Part 10). 

There are some other restrictions on the molecules which can satisfy condition 
(S.6) but these will be discussed later. 

(ii) Axially symmetric top molecules which have a permanent dipole moment, 
thus an ordinary pure rotation spectrum. In such molecules the axial component of 
the dipole moment operator p. belongs to an A species of the group. Vibration then 
induces a dipole moment in the direction of z and the condition (8.6) is satisfied but 
the spectrum is ·not in general, purely vibrational induced and this case is of no interest. 
However, if the vibration induces a dipole moment perpendicular to the z axis 
(Ilx, fly) and certain symmetry conditions are satisfied, then Eq. (8.6) can be satisfied 
and vibration can induce a new type of the purely rotational spectrum (in the 
degenerate vibrational states) with different selection rules on the quantum numbers, 
thus providing a new type of information on the molecular parameters. 

Note that linear molecules of Coov symmetry have r(ltz ) = A1 but they cannot 
have an x or y-polarized pure rotational spectrum induced by vibration because 
we can always find a symmetry plane (Iv such that P.x (or Ily) is antisymmetrical with 
respect the reflection in it while (rvY in this case contains only species which are sym
metrical with respect to reflection. 

Let us now consider in more detail the symmetries and selection rules for the 
transitions induced by vibrations. We have already seen that we can exclude from 
this discussion all linear molecules as well as molecules with the center of symmetry. 
The point groups of the remaining molecules can be divided into three classes: 

(i) point groups of symmetric top molecules in which the axis of highest order is 
(or can be chosen to be) a proper or C axis (e.g., Cnv or Dnh groups), (ii) point groups 
of symmetric top molecules in which the axis of highest order is an improper or S 
axis (e.g., D2d group), (iii) spherical top molecules (T, 0, I). 

1'1.1. Rotational Transitions in Symmetric Top Molecules 

('-symmetric top point groups: In C symmetric-top point groups the degenerate 
symmetry species Es are labelled according to their behaviour under rotations about 
the highest-order rotation axis Cn by an index s which takes all integral values in the 
range () < s < n/2. 

The symmetric squares of the degenerate species are given by: 

[E:J = A + E2s if 0 < s < 11/4, (8.la) 
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[E:J = A + B + B if s = 11/4, 

[E:J = A + En - 2s if 11/4 < s < n/2. 

Papousek: 

(8.7b) 

(B.7c) 

In Eqs (B.7), the additional subscripts or superscripts in the species labels (e.g. E{ or 
E~) have been ignored; in every case the A species on the right-hand side of Eq. (B.7) 
is the totally symmetric species (e.g. At in Cnv groups or A; in D(2n+l)b groups). 

The axial component of the electric dipole moment operator Ilz belongs always 
to an A species of the group and the condition (B.6) can only be satisfied if Ilz is 
totally symmetric. In that case, however, the molecule is allowed by symmetry to 
have a permanent dipole moment and the rotational spectrum with the selection 
rules given by Eq. (6.10) is not purely vibrationally induced. 

The perpendicular components /lx, Ily of the dipole moment operator belong to 
an E1 species, thus Eq. (8.6) can only be satisfied if Eq. (8.7c) holds and if n = 2s + 1. 
Thus the Cn axis must be of odd order, and the only vibrational levels which can 
show a vibrationally induced rotational spectrum are those belonging to a symmetry 
species E. with s = (n - 1)/2. 

The rotational selection rules are determined by the matrix elements of the direc
tion cosines in the expression [cf. Eq. (6.3)] 

<q,~1 /l.TIq,~> <q,; Azxlq,;> + <q,~1 IlYIq,~> <q,~1 Azylq,;> = 

= t[ < q,~1 /lx - illy 1 q,~> < q,;1 Azx + iAzyl q,:,:> + < q,~1 Ilx + illy 1 q,~> x 

x < cP~1 Azx - iAzyl cP~>] , (8.B) 

(8.9) 

Since we are dealing with degenerate vibrational levels, the question of the "± I" 
selection rules also arises. In a degenerate vibrational level each rotational level with 
K oF 0 (K == Ikj), the Coriolis interaction for rotation around the symmetry axis z 
splits the degeneracy by a factor 

(8.1O) 

where Ceff is the effective Coriolis constant; the upper sign refers to the + 1 pair of 
levels, the lower sign to the -1 pair. 

By using standard methods 1. 71, we find the following selection rule on J, K and 
the I components for rotational transitions induced by vibrations: 

K + 1, -/~K, +1 

t:.J = 0, ± 1 . 

(B.lla) 

(B.llb) 
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As an example, let us consider molecules belonging to C3v point groups (e.g., PH3, 

CH3F) and D3h point groups (e.g. BeI3). 

The species of Jlz. the space-fixed component of the electric dipole moment in 
a e3v molecule is A 2 • The species of the molecule-fixed components of p are those 
of Tx. Ty, Tz, i.e. J.lz is At> (Jlx, Jly) are E1 (=E). The permanent dipole moment has 
the direction of the molecule-fixed axis z (Fig. 7) and the molecule has an ordinary 
pure rotation spectrum in a nondegenerate vibrational state with the selection rules 
f).] = 0, ± 1 and f).k = 0 [Eq. (6.10)]' The permanent dipole moment induces of 
course an ordinary pure rotation spectrum in a degenerate vibrational state with 
the same selection rules on J, k and the selection rules + I ...... + I and -1 ...... -1 
(+1 #+ -I). 

Vibrations inducing a dipole moment parallel with the z axis do not induce for
bidden rotational spectra because (02 /lzl oq2)e has of course the same selection rules 
as )/;C). On the other hand, a new type of rotational transitions with the selection 
rules (8.11) arises through the perpendicular vibrations because Eq. (B.7e) holds for 
Cjy group. 

For D3h molecules, /lz is of the species A~ and the species of the molecule-fixed 
components are A~ for /lz and E' for (/lx. /ly)' There is no permanent dipole moment 
and these molecules do not have an ordinary pure rotation spectrum. However, Eq. 
(8.7e) holds for D3h groups and the vibrationally induced rotational spectra with 
the selection rules given by Eqs (8.11) can exist. 

S-symmetrie-top point groups: In S-symmetric-top point groups the label s on 
the degenerate symmetry species Es refers to the behaviour with respect to the rota
tion-reflection operation Sm; s takes all integral values in the range 0 < s < nl2 and 
Eqs (S.7) also hold. 

The perpendicular components (/lx. /lv) of the dipole moment operator belong to 
an E 1 species and consequently, a perpendicular vibrationally induced rotational 
spectrum is allowed if n = 2s + 1. However, since 

S25+2 C 
(25+ I) = (2. + 1) , (8.12) 

an odd S axis is necessarily coincident with a C axis of the same order. Thus these 
groups should be regarded as C point groups rather than S point groups; the induced 
rotational spectra of molecules having this symmetry are as described above (see the 
example of D3h molecules). 

An important difference between the C and S point groups consists however in 
that the axial component Jlz of the electric dipole moment belongs to a B species. 
Thus. the condition (8.6) with 0( = Z can be satisfied if Eq. (8.7b) holds. i.e. if n = 4s 
(the order n of the axis Sn must be a multiple of four). The component /lz has the 
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selection rules I1J = 0, ± 1; 11k = ° and ± I +-+ ± I and a parallel-type rotational 
spectrum can be induced in the doubly degenerate vibrational states E(./4)' 

The D2d point group is likely to be the most important in practice (e.g., allene 
CHzCCHz). There is an S4 symmetry axis (and no C4 axis) in D2d molecules. The 
species of flz is B2 , that of (Jlx, fly) is E. There is no permanent dipole moment in 
molecules of this kind but a parallel rotational spectrum in the excited vibrational 
state of the species E can be induced. 

8.2. Rotational Transitions in Spherical Top Molecules 

The point groups that qualify are T, Td , 0, and I (no center of symmetry). The three 
components of the electric dipole moment vector with respect to the molecule-fixed 
axes (flx, Jly, IlJ form the basis of a triply degenerate irreducible representation F z 
for the T and Td groups, F 1 for 0 and I groups; thus there is no permanent dipole 
moment in these molecules. 

From the direct product of the species of these point groups 72, we obtain that the 
only vibrational species whose symmetric squares satisfy condition (8.6) are the F 
levels of molecules belonging to the point group T and the F 1 and F z levels of mcle
cules belonging to the point group Td • The latter point group is the most important 
in practice as is illustrated by molecules of the methane type ( GeH4' SiF4, CF4 or 
CCI4 ). 

We have the usual selection rule I1J = 0, ± 1 on J for the vibrationally induced 
rotational spectrum of tetrahedral molecules in the triply degenerate vibrational 
states. The analogue of the ± I selection rule is the selection rule on the approximate 
momentum R = J - L, where J is the total angular momentum and L is given by 

L = II, = IQ, x P,. (s.I3) , , 

In Eq. (8.13), Q, is the vector (Qtx, Qty, Q,z) of the component normal coordinates 
of species F while P, is the corresponding vector of the conjugate momenta; (,1, 
is thereforc the vibrational angular momentum associated with the t-th normal 
mode ((, is the Coriolis coupling constant). 

The rotational levels are then labelled by the quantum number J and the ap
proximate number R which is the eigenvalue of R2. For the fundamental levels of F 
vibrations, R assumes the values J + 1, J, and J - 1 respectively for the sublevels 
F( + )(1), F(O)(1), and F( - )(1), whose rotational energies are given approximately by!: 

F(+)(1) = BJ(J + 1) + 2Blv(1 + 1) (R = J + 1), 

F(O)(1) = BJ(J + 1) (R = J), 

(R = J - 1) . 

(8.14a) 

(S.14b) 

(8.14£') 
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8.3. Observations of the Vibrationally Induced Rotational Transitions 

Intensities of the vibrationally induced transitions depend essentially on the following 
two factors: (i) the effective dipole transition moment which for the fundamental 
vibrational level can be approximately written as 71 [see also Eq. (4. II)] 

<1- 1 1 (/l" + i/ly)eff 11 +1> = <1 +11 (/l" - i/ly)eff 11-1> = 

= (o2/lx/oq;,,)e - 27t 'i,ktxtxt'x(O/lx/oqt,,Je/h).:!2 , 
t' 

(8.15) 

where ktxtxt'x = (iJ3v/aq;xoq;,Je is a cubic force constant and we use the notation 
Iv:'> for the vibrational wavefunctions; (ii) on the Boltzman factor exp ( - Et/kT) 
which reduces the intensity of the spectrum lines due to the decreased population 
of the excited vibrational level. 

If the anharmonic contributions were negligible, the transition moment (8.15) 
would depend only on (a2Jlx/aq;)e, i.e. would be simply related to that of the first 
overtone vibrational transition. If we assume that the transition moment for the 
ordinary pure rotational spectra is of the order of magnitude 1 D (= 0·33356 . 
. 10- 29 C m), then the order of magnitude estimate of the effective transition moment 
of the induced transition is 10- 2 D (Table III) and because the line intensity is 
proportional to the square of the transition moment, we have the factor 10-4 by 
which the intensity of the induced rotational transition is decreased in comparison 
with that of the ordinary rotational spectrum. The Boltzman factor decreases the 
intensity typically by two orders of magnitude, thus the intensity of the forbidden 
transition is about 10- 6 of the intensity of the rotational spectrum of an ordinary 
polar molecule. 

The unfavourable population factor can be eliminated by using the technique of 
the infrared-microwave double resonance 73 in which an infrared laser source is used 
to pump the molecules to the excited vibrational state and then a microwave frequency 
is swept across the rotational transition. J n this way, Curl and Oka 74 measured for 
the first time the vibration ally induced rotational transition: the Fi2) +-+ F~2) transi
tion in the J R = 67, V3 = 1 level of methane, CH4 • They used a 3·39 Ilm He-Ne 
laser whose frequency nearly coincides with the frequency of the P+(7) vibrational
-rotational line (the F\2) +-+ F~2) transition) to pump the molecules to the /)3 = 1 
level and to measure the frequency (6895'3 MHz) of the I1J = 0 induced rota
tional transition in the triply degenerate vibrational level (Fig. 11). 

A more favourable region for a direct observation of the induced rotational spectra 
is the far infrared, where the frequency and induced emission factors are less prohibi
tive. Ozier and Rosenberg75 have measured such transitions for the first time in the 
speclra between 80 and 180 cm -lof the V4 = 1 state of methane. 

Nevertheless, the most important data on the vibrationally induced rotational 
transitions in the excited vibrational states have been later obtained by the infrared-
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-microwave double resonance technique73 and relatively recently by the extremely 
sensitive technique of the microwave Fourier transform spectroscopy76. 

Pure rotational transitions by vibrationally induced dipole moments have been 
observed in the triply degenerate vibrational levels by use of infrared-microwave 

TABLElli 

Vibrationally induced dipole moments in the excited vibrational states 

Dipole moment Vibrational 
Molecule state Ref. 

inD.102 in Cm. 1032 

12CH4 { 2'00(1) 6'67(3) v3 = 1 70 (see also 87a) 
3-47 11-6 v4 = 1 87b 

12CD4 ,.., 2·6 ,.., 8·67 v4 = 1 86 
l3CD/ 0·940 (seed) 3·137 v4 = 1 85 

CF4 3-6 12 v3 = 1 79-82 
SiH4"·J 1,46(5) 4'87(17) v3 = 1 see footnote b in Table VII 
BF3 ,..,4 ,.., 13 v3 = I 91,92 
CDF3 { 1,222(49) 4'076(163) } Vs = 1 90a 

0'760(66) (seee) 2'535(220) 90c 
CD3C1 0'601(57) 2'00(19) Vs = 1 90b 
CH2 CCH2 { 4'41(5) (seeb) 14'7(17)} vI0= I} 89 (see also 216) 
(allen e) 4'52(6) (seeC) 15·1 (20) vll = 1 

;;:;;0'5 ;;:;;1·7 

-----~-

" See footnote b in Table VII. "Dipole moment calculated from Stark shifts but neglecting polariza
tion effects89. C The contribution of polarization was taken into account approxirnately89. d Aver
age value (see8S). e Corrected for the contribution of the "2, I" I-type interaction90c, J See note 
added in proof. 

FIG. 11 

Energy level diagram for the infrared-micro
wave double resonance experiment in CH4 
(ref.74). The vibrationally induced rotational 
transition in the v3 = 1 state of species F2 

is indicated by the bold arrow. The magni
fied ground state splitting on the left pertains 
to an experiment described in Part 9.2. 
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or infrared-radiofrequency double resonance for several tetrahedral molecules: 
SiH4 (ref. 77), GeH4 (ref. 78), CF4 (refs79 - 82), SiF4 (ref.83a), SnH4 (ref.83b) and OS04 
(ref. 84). Recently, Magerl et al. 8S used the infrared laser sideband spectroscopy to 
determine the vibration ally induced dipole moment in the V4 = 1 fundamental of 
13CD4 as a function of the quantum number R. 

The microwave Fourier transform spectroscopy has been used for the first time 
to observe pure rotational transitions in the V4 = 1 vibrational state of 12CD4 by 
Oldani et al.86 and later it has been used also for 12CH4 (ref.87a) and SiH4 (ref.88). 
Hilico et a1.87b increased the vibrational population in the V4 = 1 state of 12CH4 by 
using an electric discharge and observed the vibrationally induced rotational transi
tions in the V4 = 1 state between 120 and 268 GHz (Table III). 

The vibrationally induced rotational spectra of a symmetric top molecule have 
been detected for the first time in the Vs = 1 state of CDF 3 by laser-Stark spectro
scopy90. The first measurement of these transitions for a nonpolar symmetric top 
molecule have been reported by Yamamoto et al. 91 for llBF3 using the infrared
-microwave double resonance technique (see ref.92 as for l°BF 3)' 

Schematic energy diagram for this double resonance experiment is illustrated by 
Fig. 12. The RQ(J, K = 3) transition is pumped by a tunable diode laser (TDL) 
and simultaneous resonance of the microwave (MW) transition is detected as an 
increase in the infrared absorption. 

It has been already mentioned that forbidden transitions can provide information 
on certain spectroscopical parameters which cannot be obtained from the frequencies 
of the allowed transitions. We will use the example of the BF 3 molecule to illustrate 
this situation. 

FIG. 12 

Energy level diagram for the infrared-micro
wave double resonance experiment in llBF3 
(ref.91 ). The vibrationally induced rotational 
transition K = 5 +- K = 4 (-I +- + I, AI = 
= 0) in v3 = 1 state of species E' is indicated 
by the bold arrow 
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It is well known that the expression for the ground state rotational energy levels 
of a C3v molecule can be written as! 

ElJ, K) = BJ(J + 1) + (Bz - Bx) K2 - DJJ2(J + 1)2 - DJKJ(J + 1) K2 -

- DKK4 + HJJ3(J + 1)3 + H JK J2(J + 1)2 K2 + HKJJ(J + 1)K4 + 
+ HKK6 + ... + Esplit , (8.16) 

TABLE IV 

Ground state values of Bo;; and DK for symmetric top molecules (in cm -1) 

Symmetric top: 
Molecule prolate (p) Bz (seea ) D K • lO4 Ref. 

oblate (0) 

------ ~ ~-------- --------- - -- ----------- - --

14NH3 0 6·2275053(24) (seeh) 9·1383(11) (seeb) 146 (see!) 
6·2295057(26) (seec ) 8·8207(15) (seeC) 

ISNH3 0 6·2279438(78) (seeb) 9·14394(85) (seeb) 147 
6·2298495(78) (seec ) 8·84755(85) (seeC) 

PH3 0 3·91903115(95) 1·412966(289) 122 (see also 
lO6-lO8, 
119-121) 

PD3 0 1·967lOl (100) lO7 
AsH3 0 3-498555092(392) 1·1166lO86( 4063) 116 
SH; 0 4·228258(26) 2·216(20) 138 

11BF3 0 0'17217368(26) 0'0035488(40) 93 
CH3D p 5,2508231(43) - o· 7869(230) 128 
CD3H 0 2'62896(4) 0'138(2) 129 
CH3F p 5,182009(12) 0'7033(25) 137 
CD/sCI p 2'613332(25) 0'1797(42) 90b 
CD337Cl p 2'613372(54) 0'1923(lO8) 90b 

CH3I p 5'17285(8) 0'70(28) 136a 
(see also 136b) 

CHF3 0 0'189246(3) (3'3)d 135a 
CDF3 0 0,189238(3) (3·l)d 135a 

0·1892380(28) 0'0015(5) 90c 
SiH3D p 2'86354(46) (seec ) 130 
POF3 P 0'16050200(6) -0'0003716(40) 132 (seeg) 

0'1605029(1 ) 135b 
CH2CCH2 p 4'811842(12) 0,974(69) 216 

a Bz = Ao for prolate (p) symmetric tops, Bz = Co for oblate (0) symmetric tops. bLower 
component of the inversion doublet. C Upper component of the inversion doublet. d Calculated 
from the force field e Ao - 5DK .! Ground state e~x = 1'241(70). lO-4D (ref. 1s2). g Ground 
state e~x = 4,0(1·4). lO-6 D. 
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where Esplil is a term which describes the small A 1-A2 splitting of energy levels with 
K = 3n (n = 1, 2, 3, ... ) and is absent otherwise. 

The ordinary rotation spectra do not provide information on the parameters Bz , 

DK , HK , ••• because of the Ak = 0 selection rule. No information can be obtained 
from the combination differences for the allowed parallel or perpendicular vibra
tional-rotational bands because they provide only the differences between the ground 
state levels (J + 1, K), (1, K), and (1 - 1, K). However, it can be seen from Fig. 12 
that a simple combination of the allowed vibrational-rotational and forbidden rota
tional transitions determines the differences between the levels differing by ± 3 in 
the rotational quantum number k (see Table IV). 

9. FORBIDDEN TRANSITIONS INDUCED BY VIBRATIONAL-ROTATIONAL 
INTERACTIONS 

In Part 8 of this paper, forbidden rotational transitions have been discussed in sym
metric top and spherical top molecules which are induced by vibrations due to the 
electrical and mechanical anharmonicities [Eq. (8.15)]' In Part 9, forbidden rota
tional and vibrational-rotational transitions are discussed which are induced by 
vibrational-rotational interactions. They are also important because they give rise 
to purely rotational spectra in the ground vibrational states of nonpolar molecules as 
well to various forbidden vibrational-rotational transitions providing unique infor
mation on the molecular constants. 

9.1. Symmetric Top Molecules 

The vibronic wavefunction CPev for a molecule with an axis of rotation en (point 
group J) can be characterized by a vibronic number Gev such that1 ,94 

(9.1) 

where Gov can be expressed in terms of vibrational and electronic quantum numbers 

(9.2) 

Ge and Gv characterize the transformation properties of the electronic wavefunction 
CPe and of the vibrational wavefunction, respectively (Gc = 0 if the molecule is in 
a totally symmetric electronic state). In nonlinear molecules, Gv is composed of two 
parts. If n is even, the molecule may have vibrational modes of species B and the first 
term in Gv adds up the total number of quanta of such vibrations excited for the 
state in question. If n is odd, there can be no B vibrations, and this term vanishes. 
The second term in Gv involves a sum over the (signed) vibrational quantum numbers 
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associated with degenerate vibrations; St specifies the representation Es, in which 
the s-th degenerate vibration belongs. 

It should be mentioned that the classification of the vibronic wavefunctions based 
on their transformation properties with respect to Cn does not give full information 
on their symmetry in the case of Dnd (n even) and Sm (m/2 even) point groups94 
(point group II). In this case en should be replaced by Sm and Gv is 

Gv = n LVB + LStlt. (9.3) 
B t 

Although Cn has been introduced as the point group operation, it should be under
stood also as the completely feasible symmetry operation P,; which permutes n sym
metrically equivalent atomic nuclei1 ,20 (similarly Sm is the corresponding permuta
tion followed by inversion E*). 

The effect of CII on the symmetric top rotational wavefunctions /1, k) is therefore 

CIIIJ, k) = exp (21tik/n) IJ, k) (9.4) 

and the vibrational-rotational Hamiltonian Hvr commutes with Cn, 

(9.5) 

According to Eqs (9.1) and (9.4), it holds that 

(9.6) 

and 

(<p;vl (J, kif I C;l = exp [ -2rri(klf - G;v)/n] (<p;vl (J, klfl. (9.7) 

By using Eqs (9.4)-(9.7) we find 

= exp {21ti[(G~ - kif) - (G~ - k')]/n} (<p~rl Hvrl<p~r) , (9.8) 
where 

<Pvr = InVi) Inv!') IJ, k) . (9.9) 
i t 

Following Hougen94, we introduce the quantum number G defined as 

G = Gv - k. (9.10) 
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Thus we see that the following condition must be satisfied in order that <c:P~rl Hvrlc:P~r> 
be nonvanishing for groups I 

G" - G' = pn, (9.11) 

where p is an arbitrary integer (positive as well as negative) including zero. For 
groups II this condition is 

G" - G' = (1 + 2p) n. (9.12) 

Because the component of the electric dipole moment operator Jl.z along the space
-fixed Z axis is invariant with respect to the operation en (ref. 1 ), the electric dipole 
transition between two states is allowed if and only if the condition (9.11) is satisfied 
(groups I) or (9.12) is satisfied (groups II). 

Since G classifies the wavefunctions only with respect to Cn (groups I) or S2n 

(groups II) elements of symmetry, the quantum number G gives the complete in
formation on the symmetry of states only for the groups Cn or Sln (n even). For 
other groups additional restrictions must be imposed, following from the presence 
of symmetry elements such as i, (Th or (Tv which can further distinguish the species 
of the vibronic wavefunctions. These restrictions can, however, be imposed as the 
last step. 

The rotation and vibration-rotation transitions can be divided with the help of G 
into the following groups9S: (i) Strictly forbidden are transitions for which IlG -:F pn 

for groups I or IlG -:F (1 + 2p) n for groups II. Such transitions are possible only 
through extremely small spin-rotation and spin-spin interactions (cf. Part 5). (ii) 
Strongly allowed are transitions which satisfy conditions (9.11) or (9.12) and Ilk = 0 
or ± 1 (Part 6). (iii) Approximately forbidden are transitions which satisfy conditions 
(9.11) or (9.12) but ilk -:F 0, ±1. These transitions are forbidden in the zeroth-order 
approximation (Part 6) but can be allowed in higher approximation. 

Before discussing in more detail the radiative selection rules which follow from 
Eqs (9.11) or (9.12), let us mention that the intermolecular interaction has the same 
permutation symmetry as Hvr (ref. 3 0). Therefore, in both radiative and collisional 
processes we have the same selection rules for ilk. 

As an example of the application of the general selection rule (9.11), let us consider 
the rotation and vibration-rotation transitions of Crsymmetric top molecules (the 
most important in practice among these molecules are the C 3v and D3h molecules). 

Pure rotational transitions: By applying Eq. (9.11), we find the following selection 
rules for the pure rotational transitions in the nondegenerate vibrational states 
(including of course the ground vibrational state): 

Ilk(=k' - kIf) = 3p (p = 0, ±1, ±2, ... ), (9.13) 
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that is 
11k = 0, ±3, ±6, ... (==l1k = 0 mod 3). (9.13b) 

For the fundamental vibrational level of the doubly degenerate vibration (v t = 1, 
I, = 1), we find that 

11k = p (p = 0, ± 1, ± 2, ... ) (9.I4a) 
that is 

11k = 0, ±1, ±2, ... (==l1k = Omodl). (9.14b) 

In terms of the rotational quantum number K( == Iki), Eq. (9.13) can be written as 

11K (==K' - K") = 0; K ..... K , 

11K = ±3; K+3p ..... K, 

11K = ± 1; 3K + 2 ..... 3K + 1 

(9.15) 

(9.16) 

(9.17) 

The rule (9.14) has to be supplemented by the selection rules on the ± 1 components 
of the rotational levels with k i= 0 which are split by the Coriolis interaction for the 
rotation around the z axis [Eq. (8.10)]' In the + 1 level, the signs of k and It are 
the same, in the -llevels opposite. Using Eq. (9.11), we find for II1KI = Il1kl the 
following selection rules on K and 1: 

11K = 0; (K, ±l) ..... (K, ±l), 

AK=±l; (K+ 1,-1) ..... (K, +1), 

AK= ±2; (K+2,+I) ..... (K,-I), 

11K = ±3; (K + 3, ±l) ..... (K, ±l) 

(with the signs of 1 correlated). 

(9.18) 

(9.19) 

(9.20) 

(9.21) 

Besides these rules, there are rules for IAKI i= IAkl, which hold for special values 
of K. For example 

K = 1; AK = 0 but Ak = ± 2, + 1 ..... + 1 , (9.22) 

K = 2; AK = 0 but Ak = ± 4, - 1 ..... -I , (9.23) 

K = 3; 11K = 0 but Ak = ± 6, -/ ..... + / (9.24) 
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Vibrational-rotational transitions: The selection rules for the vibrational-rota
tional transitions between the nondegenerate vibrational states as for the quantum 
number k are the same as those given in Eq. (9.13). As for the transitions between 
a nondegenerate (species A) and doubly degenerate (species E) vibrational level, they 
can be found to be 

11k = 3p ± t (p = 0, ± t, ±2, ... ) (9.25a) 

that is 

11k = ±1, ±2, ±4, ±5, ... (=l1k = ±1 mod 3). (9.25b) 

The ± I selection rules for I 11K I = Il1kl are the following (all the signs are correlated): 

11K = ±1 ; (K ± 1, ±I)+-+K, (9.26) 

11K = ±2; (K ± 2, +/) +-+K, (9.27) 

11K = ±4; (K ± 4, ± I) +-+ K (9.28) 

For II1KI ¥= Il1kl, we have for special values of K for example the following rules: 

or 

K = 1; 11K = 0 but 11k = ± 2, (K' = t, -I) +-+ K" = 1 

K = 2; 11K = 0 but 11k = ±4, (K' = 2, + l) +-+ K" = 2 

(9.29) 

(9.30) 

K = t; 11K = +2 but 11k = ±4; (K' = 3, +1) +-+ K' = 1. (9.31) 

Because C 3 is not the only symmetry operation for the C3v or D3b groups, these rules 
are necessary but not sufficient conditions for a transition to be at least approximately 
allowed. For example, reflection (Tv distinguishes between the At and A2 species in the 
C 3v and D3b groups while (Tb between the I and" species in the D3b group. The overall 
symmetry selection rule is Ai +-+ A 2, E +-+ E for C3v group and Ai +-+ At, A2 +-+ A 2, 
E +--> E. and I +-+ " for the D3h group. This makes it possible for example to decide 
which components of the A t-A2 splitting of energy levels are involved in a particular 
transition (Fig. t 3). Similarly, the 11k = 0 or ± 6 transitions are not allowed in the 
D3h group because they violate the '+-->" selection rule (Tables V and VI). 

The possibility of forbidden transitions in the rotational and vibrational-rota
tional spectra of C 3v molecules has been considered for the first time by Hanson96, 

who derived expressions for the linestrengths of the 11k = ± 3 pure rotational transi-

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 



2606 Papouiek: 

tions and for some forbidden vibrational-rotational transitions (unfortunately some 
of the results cannot be correct because the proposed forbidden transitions violate 
the overall symmetry selection rule). 

Actually the first complete theory of the forbidden pure rotational spectra in sym
metric top molecules has been worked out by Watson97 (see also ref. 98) and inde
pendently by Aliev and Mikhaylov99-101 (see also ref.l02 for the purely rotational 
spectra in the excited vibrational states of nonpolar molecules). The third-order 
theory of the line intensities in the allowed and forbidden vibrational-rotational 
bands of C3v molecules has been worked out by Aliev, Papousek, and Urban18, for 
the D3h molecules (with emphasis on Ht) by Aliev and Mikhaylov103 (see also 
refs 1 04,105). Sarka95 discussed general conditions under which observation of the 
forbidden vibration-rotation transitions can be expected in the infrared spectra of 
symmetric top molecules with the special emphasis on the determination of the rota
tional constant Bz (C in oblate symmetric tops, A in prolate tops!). 

K=O K=2 K=3 
t/ 

[ )=4 [ 

}?(3.11 

1):4 A -A' , , 
[' 

A-
N 

A, 

A, A'~ 
GS 

[--E' 
A'~ A, 

Az 'If: 

K=O K=1 K=2 K=3 

FIG. 13 

Energy level diagram of the rotational levels in the ground vibrational state (GS) and in the 
first excited vibrational state v:' = 1 ± 1 of the doubly degenerate normal vibration for C 3v and 
D3h molecules. The overall symmetry species for C 3v group are indicated on the left side, those 
for D3h on the right side of each level. Dashed lines indicate vibrational-rotational interactions, 
lines with arrows indicate allowed or approximately allowed transitions. Bold lines (full or 
dashed) mean that a given transition or interaction occurs in both C 3v or D3h groups 
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TABLE V 

Symmetry classification of the rovibrational states in a nondegenerate vibrational state of C3v and D3b moleculesQ 

11',,)1 J, k) 

Iv,,) IJ,o) 
II',,) IJ, + I), It'n) IJ, -1) 
II',,) IJ, +2), Ivn> IJ, -2) 
II',,) (1.1, +3) + IJ, -3» 
It',,) <IJ, +3) - IJ,~3» 

C3v species 

Jeven Jodd 

At A2 
E 
E 

A2 At 
AI A2 

D3h species 

Jeven Jodd 
----------

Ai A; 
EN 

E' 
A" I A" 2 

A" 2 A" 1 

D3b (seeb) 

ItPj(q» Iv,,) IJ, k) species 

sym. antisym. 

Jeven Jodd Jeven Jodd 

AI. A; Ai Ai 
EN E' 
E' EN 

A'{ A" 2 A' 2 Ai 
A2 A'l Ai Az 

a The symmetry species for C 3v group hold for k with modulo 3 (those for the D3h group for k with modulo 6), In the D3h group, the species 
of the states with K + 3, K + 4, K + 5 are obtained from those with K, K + I, K + 2 by changing' into N and vice versa. b Symmetry clas
sification of the states in XY 3 molecules with a large amplitude inversion motion. 
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TABLE VI II 

Symmetry classification of the rovibrational states in the fundamental vibrational level of the doubly degenerate vibration in C3v and D3h 

moleculesa 

--------

D3h (seeb) 

C 3v species D3h species 
I(/);(q» lv' :J, k) species 

Ivl;J, k) sym. antisym. 

Jeven Jodd Jeven Jodd Jeven Jodd Jeven Jodd 
--- -

±I {II +1; J, 0) E E' E' EN 

±I II-I; J,o> 

r:;J,+,>+ A2 At A'i A2 At A" A' AI 2 2 

+/11 ,J,-I) 
II+I;J, +1)- Al A2 A2 A1 A2 A'l At A' 2 
II-I; J. -I) 

_I {II + I; J. -I) E EN EN E' 
11-\ J. +1) 

n 
-'--/{11+I;J,+2) !!.. E E' E' EN 

ii" 
~ , II-I; J, -2) 

(;I f+l; J. -2) + At A2 At A' Ai A' A" A'l .. 2 2 2 
n _I II-I; J, +2) ?" 
n lll+I;J.-2)- A2 Al A2 Ai A' A' A'l A2 :r 2 I .. 

11-I;J.+2) ~ 
n 

+1 {II +1; J, +3) E EN EN E' 0 
3 
3 II-I; J. -3) 
c 
? _/{11+I;J,-3) E EN EN E' 
'< 
?- 11-1; J, +3) ..., 

II> 

~ 
--_.- ----------- 'tI 

a See footnote "a" in Table V. b See footnote "b" in Table V. 
0 s:: 
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The experimental observations of the forbidden transitions in polar and nonpolar 
symmetric top molecules are now an interesting part of the history of microwave, 
submillimeterwave, and high-resolution infrared spectrscopy. The flk = ± 3 transi
tions in the pure rotational spectra of PH3, PD3, and AsH3 were first detected in the 
microwave spectra by Chu and Okal06.107 who were helped in their measurements 
by the line frequency predictions based on the previous observations of fl(k - 1) = 

= ±3 vibrational-rotational transitions of PH3 by Maki, Sams, and 0lson108 and 
by Olson et a1. 109 for AsH3. Measurements of the Ak = ± 3 forbidden transitions 
in the ground vibrational state have been later extended to the submillimeterwave 
region forPH3 (refs I 10-112) and AsH3 (refsI13-115, see also refs116 .117). Kazakov 
et al. 118 have observed the flK = 2 and 3 pure rotational spectra in the V2 = 1 
(A I) and V4 = 1 (E) vibrational states of AsH3 using the extremely sensitive technique 
of submillimeterwave spectroscopy with acoustic detection (RAD). 

Many forbidden transitions have also been observed in the high-resolution vibra
tional-rotational spectra of PH3 (refsl08.119-123) and AsH3 (refsl09.124). Especially 
the work of DiLonardo et al. 124 is an excellent example of the importance of the 
studies of forbidden transitions: they recorded the infrared absorption of AsH3 
between 750 -1 200 cm -1 at a resolution of 0·006 cm -1 and among 2 419 transitions, 
nearly 700 forbidden transitions with fl( k - I) = ± 3, ± 6, ± 9 have been assigned 
to the V2 = 1 (A 1 ) and V4 = 1 (E) bands. 

When one of the protons in methane, CH4, is replaced with a deuteron, the Td 
symmetry is reduced to C3vo and the associated changes in the zero-point vibration 
and molecular charge distribution induce a small permanent dipole moment101 

p-~el ~ 5.10- 3 D. The allowed rotational spectrum (Ak = 0) has been observed 
in CH3 D by Ozier et al. 125 between 40 -120 cm -1 with a low signal-to-noise ratio, 
but later many forbidden vibrational-rotational transitions have been ob
served'26-128 from which the ground state rotational constant Ao and the centrifugal 
distortion constant D~ could be determined accurately [Ao = 5'2508231(43) cm- 1, 
D~ = -7'869(230).10- 5 cm- 1, reU28]. In 12CD3H, 50 forbidden fl(k - [6) = ±3 
transitions have been observed allowing to determine the pure "K-dependent" 
constants Co = 2'62896(4)cm- 1, D~ = 1·38(2).1O- s cm- 1 besides Bo and other 
quartic and sextic centrifugal distortion constants129. The SiH3D forbidden spectra 
have been measured by Lovejoy and Olson130. Kagann et al.131.132 have observed 
a large number of flk = ± 3 Q-branch microwave transitions in POF 3 and from an 
analysis of the frequencies have determined Ao - Bo = 7'2557.10- 3 cm- 1 and the 
ground state quartic and sextic centrifugal distortion constants. Due to the small 
value of Ao - Bo, POF 3 is a near-spherical top so that the energy separation of J, 
k and J, k ± 3 levels with k = =+= 1 is only '" 3 (Ao - Bo). Thus an application of 
a relatively low Stark field in the laser-Stark spectroscopy can create an attempted 
crossing of the levels. However, as a result of centrifugal distortion [Eq. (9.36)], 
a small nonzero matrix element connects the corresponding states and consequently 
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the levels cannot cross (avoided crossing). From the resonant field of the anticrossing 
and knowledge of the Stark effect it is possible to calculate the zero-field splitting of 
these levels and therefore the value of Ao - Bo (see, e.g. refsI33-135). This is an 
alternative to the determination of the "spectroscopically forbidden" rotational 
constants from measuring forbidden transitions. but as indicated above, it is limited 
by certain requirements on the molecular structural parameters. 

The first observation ot the forbidden vibrational-rotational transition with the 
selection rule 11K = ±2 [Eq. (9.27)] has been described by Matsumura et al. 136 

(see also l37) for CH3I (these transitions are induced by the x-y Coriolis interaction 
between the + llevel, K = 3 of the Vs = 1 level and the closely lying -llevel, K = 4 
of the V3 = 1, V6 = 1 combination level). 

Nakanaga and Amano138 have recently observed the (K' = 1, -1) +-- K" = 2 
[Eq. (9.26)] and the (K' = 3, + 1) +-- K" = 1 forbidden transitions [Eq. (9.31)] to 
the VI = 1 and V3 = 1 vibrational levels in the difference frequency laser spectra of 
the molecular ion SHj which are enhanced by state mixing by a higher-order Coriolis 
interaction. 

Observation of the pure rotational transition for a D3h molecule is more difficult 
than those for C3v or Td molecules. Since no first-order Stark effect exists in a D3h 

molecule (Appendix), neither Stark modulation microwave spectroscopy nor laser 
Stark is applicable in this case, unlike a Td or e3v molecule. Yamamoto et a1. 92 ,139 
have used the technique of the infrared-microwave double resonance to measure 
the frequencies of the pure rotational transitions92 K = 0 +-- K = 3 in the ground 
vibrational state of1°BF3 [the infrared diode laser was used to decrease the popula
tion of the ground state K = 0 level via the strongly allowed K = 1, + 1 (V3 = 1) +-

+-- K = 0 vibrational-rotational transition and then a microwave frequency was 
swept across the ground state rotational transition]. 

The first direct observation of pure rotational transitions of a nonpolar symmetric 
top, 11 BF 3, have been reported by Oldani and Bauder93. They used the extremely 
sensitive technique of the pulsed microwave Fourier transform spectroscopy and 
observed 60 11k = ± 3 rotational transitions in the ground state of 11 BF 3, which 
made it possible to arrive at very precise spectroscopical parameters (Table IV) of 
this molecule. 

In ammonia, NH3, because of the larger separation of the energy levels with dif
ferent k (C - B ~ - 3·7 cm -1). the probability of observing forbidden transitions 
is small. However, ammonia is a classic example of a nonrigid molecule with a large 
amplitude inversion motion 1 , in which the tunneling between the two symmetrically 
equivalent equilibrium molecular configuration leads to a measurable splitting of the 
energy levels. In 14NH3. the inversion splitting in the Vz = t state compensates for 
the separation between J, k and J, k ± 3 levels, leading to an accidental degeneracy 
of the J = 3, K = 0 and J = 3, K = 3 levels which are separated only by 
0·0962 cm -1 and interact by the centrifugal distortion effect (Fig. 5). This coincidence 
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was exploited by Laughton et a1. 140, who identified the first forbidden transitions 
in 14NH3 (K = 0, V2 = 1 ..- K = 3, ground state) by using the sensitive technique 
of infrared-microwave and laser Stark spectroscopy (the same transition in Fig. 1 
was obtained by using the diode laser spectroscopy technique4). Belov et aU41 used 
this coincidence to measure forbidden rotational transitions Jf, K = 0 ..- J", K = 3 
(J" = 2, 3,9) in the V1 = 1 state of 14NH3 in the submillimeterwave region. In 
15NH3, the J = 3, K = 3 separation is 0·9595 cm -1 and the mixing of both states 
is therefore so weak that these forbidden transitions could not be observed in lSNH3. 

A substantial progress in studying forbidden transition in both 14NH3 and lsNH3 
was achieved by Weber and Cohen142-144 who found forbidden transitions to the 
V4 = 1 level (species E) in the Fourier transform and laser Stark spectra of 14NH3 
with the AK = ±2 selection rule given by Eq. (9.27). In a subsequent series of papers 
in which the high-resolution Fourier transform spectroscopy has been used, Urban 
et al. 145 - 149 have assigned an entire band of the AK = ± 2 forbidden transitions 
to the V4 = 1 state of 14NH3 and 15NH3. This has been the most extensive work on 
forbidden transitions in polyatomic molecules published so far because more than 
900 of the forbidden transitions have been assigned by Urban in his pioneering 
work146 for 14NH3 and more than 800 Ak = ±2 and 60 Ak = ±3 forbidden 
transitions to the V4 = 1 and V2 = 2 levels of 15NH3, respectively147 (see also ref. 148). 
Recently, about 300 Ak = ±2 transitions to the V3 = 1 (species E) level of 14NH3 
have been assignedl49. 

Although the Ak = ± 3 transitions in the ground vibrational state of ammonia 
have been considered long time ago byOkaet al. (ref.98) in connection with the possible 
rotational equilibration of interstellar ammonia by these radiative transitions 7, they 
have been observed for the first time much later by Urban et aUso as the extremely 
weak lines of the AJ = 0, Ak = 0..- ±3 transitions in the submillimeter-wave 
spectrum of 14NH3. A decisive solution to this problem represents the recent work 
of Tanaka et a1. 1S t, who have measured 14 microwave transition AJ = 0, Ak = 

= ± 1 ..- +2 in 14NH3 with much better accuracy (see also ref. 1S2). 

More about the theory of forbidden transitions in symmetric tops: 

The Ak = ±3 pure rotational transitions in C3v and D3h molecules. According to 
Eq. (4.11), the part of the effective dipole moment operator which describes the 
intensity of the pure rotational transitions is 

M03 = i L([5 12 , ,u~oA.z~] + [503, A.z~] ,u~e) . (9.32) 
~ 

We use the notation Mmn for the individual terms in the effective dipole moment 
which is analogous to the notation Hmn of the expanded vibrational-rotational 
Hamiltonian [Eq. (3.2)], i.e., the first subscripet in Mmn denotes the degree of the 
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vibrational operators (coordinates q and momenta p) and the second subscript the 
degree of the rotational operators (Ja and Az2 ). 

The transformation function S12 in Eq. (9.32) can be written as l 

while 

where the explicit expressions for the coefficient S"py can be found in ref. l53 • 

The expression for M03 can be then written in the form 

M03 = t L e~P(J"J/lAZy + AZyJpJ~) , 
ally 

where the coefficients e~P are components of a third-rank tensor given by 

(9.33) 

(9.34) 

(9.35) 

(9.36) 

where eapy is the unit antisymmetric tensor (eXYZ = eyzx = ezxy = I, exzy = eyxz = 

= ezyx = - I, e~py = 0 if any pair from ct, /3, y is identical). 

In view of the symmetry property e~P = e~a, ther are in the most general case 18 
independent e~p. It can be shown by symmetry considerations97 that there is at 
least one nonzero parameter for all molecules except (i) molecules with centers of 
symmetry and (ii) molecules belonging to the point groups Cnh (n > 3), Sn (n > 4), 
Dnh (n > 3), Dnd (n > 2), 0, and I. 

The first term on the right-hand side of Eq. (9.36) describes intensity borrowing 
from the allowed infrared fundamentals through the vibrational-rotational inter
actions, while the second term describes intensity borrowing from the allowed pure 
rotational transitions through these interactions (both type of interactions are centri
fugal distortion effects). This second term vanishes for nonpolar molecules. 

As an illustration, let us consider the example of C 3v and D3h molecules (Fig. 13). 
There are three nonzero parameters e~x. e~y, and e;y which for C3v and D3b groups 
obey the same relations 

e xx = en = _ e xy 
x x y (9.37) 

(in e3y molecules, the z axis lies along the C3 axis and one of the (Iv planes is taken 
in the xz plane; in D3b molecules, the x axis lies along one of the C2 axis). 

In C3y molecules, the mixing of states is due to the !l.k = ± 3 matrix elements of 
the following centrifugal distortion operator which is obtained after the vibrational 
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contact transformation [Eq. (4.8)]: 

(9.38) 

This purely off-diagonal term can be removed by a unitary transformation [Eq. 
(4.10)], where the transformation function 503 is 

(9.39) 

Thus (e~X)eff for an XY3 pyramidal molecule can be found to be 

(e~X)eff = L (B::/wt)(OJlx/oqtx). + -rxxxzJl~·)/[2(Bx - Bz)] , (9.40) 
1=3,4 

where t = 3, 4 denotes the doubly degenerate normal coordinates of vibration. 
A quantum mechanical picture of this interaction is in Fig. 13. In C3v molecules, 

the centrifugal distortion operator 8 04 mixes the states ], k = =+= 1 with ], k = ±2, 
thus the ] = 4, k = ± 2 ~ ] = 3, k = =+= 1 forbidden transition borrows its inten
sity from the allowed rotational transition ] = 4, K = 1 ~ ] = 3, K = 1. This 
interaction is described by the second term on the right-hand side of Eq. (9.40). 
The second contribution to the intensity of the fl.k = ± 3 forbidden transitions 
comes through the interaction between the ground state] = 4, K = 2 level with the 
] = 4, K = 0 level of the doubly degenerate fundamental level due to a vibrational 
-rotational term 

(9.41) 

where 

(9.42) 

pertain to the doubly degenerate normal coordinates of vibration. 
Thus the k = ±2 ~ k = =+= 1 transition borrows its intensity also from the intensity 

of the allowed PR(3, 1) line (Fig. 13). This contribution to the effective dipole moment 
is described by the first term on the right-hand side of Eq. (9.40). 

The second type of centrifugal distortion interaction occurs in the C3v as well as 
D3h molecules; the nonpolar D3h molecules can have the fl.k = ±3 purely rotational 
spectra92.93.139. Because the spin statistical weights of the rotational energy levels of 
the D3h molecules XY3 with a half-odd spin of the atomic nuclei Y are A~(O), A~(4), 
E'(2), E"(2), A~(O), A;(4), the ground state rotational energy levels of BF3 with] 
even, K = 0 are missing (Table V) and the fl.] = 0, K = 0 ~ K = 3 transitions 
occur only for] odd139. 
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In ammonia, each rotational level is split into inversion doublets (Fig. 5). The 
symmetry classification of the energy levels is therefore different from that for 
a planar D3h molecule although we have to use the permutation-inversion group 
for ammonia which is isomorphic with the D3h point groupl,20 (Tables V and VI). 
We can consider the ammonia energy levels as those of a D3h point group (planar) 
molecule with a potential hump over the potential energy of the out-of-plane vibra
tion of the A; symmetry species. The effect of the hump is illustrated by the correla
tion of the energy levels in Fig. 14. Thus instead of the functions IJ, k) or Iv!'; J, k) 
we have to classify the wavefunctions 

(9.43) 

where the (inversion) wavefunction cJ>i(e) is either A~ (s, symmetric) or A; (a, anti
symmetric); e is the coordinate measuring the large amplitude inversion motion 
in ammonia154. Because the species of the molecule-fixed component 11:: of the 
electric dipole moment is A;, the selection rule for the allowed pure rotational 
transitions (Ak = 0) is s +-+ a. Because the matrix elements of the operator H04 
[Eq. (9.38)] connect states with the opposite parities146 of cJ>i(e), the selection rule 
for the Ak = ±3 forbidden trnsitions in ammonia-like molecules must be aug
mented by the selection rule s +-+ s and a +-+ a. Thus the scheme for the allowed and 
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9 

Correlation of energy levels between a planar D3h point group molecule Bel3 and ammonia, NH3 

Collect. Czech. Chem. Commun. (Vol. 54) (1919) 



Review 2615 

forbidden transitions of the ammonia-like molecules is that of a C3v point group 
molecule although we classify the states in the D3h group. 

The contributions of both terms on the right-hand side of Eq. (9.40) are of com
parable magnitudes. For example, Tanaka et al. 1S1 evaluated for NH3 the first 
term as 0'473.10- 4 0 (using the derivatives from the infrared band intensities) and 
the second term as 0·704 . 10- 4 0 (see also ref. 98). 

The Ak = ±2 and Ak = ±3 vibrational-rotational transitions in C 3v and D3h 
lIlolecu ies: Fig. 13 can be used to illustrate interactions leading to forbidden vibra
tional-rotational transitions to the doubly degenerate fundamental vibrational levels. 
In C3v molecules, the "2, -1" I-type interactionISS.I56 

(9.44) 

where 

(9.45) 

ql:': is defined by Eq. (9.42) and Pt± is similarly 

Pt± = PIX ± iPty . (9.46) 

Thus H Z .- 1 connects the + I, K - 1 levels with the -l, K levels in the v;' = 1 ± 1 
vibrational level (Fig. 13). Consequently, the AK = ± 2 forbidden transitions with 
the Al selection rule defined by Eq. (9.27) borrow their intensities from the allowed 
AK = ± 1 vibrational-rotational transitions. 

This does not hold for semirigid molecules with the D3h point group symmetry 
where the H Z.- 1 operator vanishes for symmetry reasons but it does hold for am
monia-like molecules where the selection rule for the AK = ±2 forbidden transi
tions must be supplemented by the selection rule 143 - 14"9 s ~ a [the species of 

(Jlx' fly) is E' for ammonia, thus the selection rules for the AK = ± 1 allowed transi
tions to the doubly degenerate vibrational level are s ~ s and a ~ a J. 

The Ak = ± 3 forbidden transitions to a nondegenerate vibrational level can be 
observed for C3v as well as D3h point group molecules. For ammonia, they have the 
s ...... s and a ~ a additional selection rule (Fig. 5). 

Theory of the intensities of the allowed and forbidden vibrational-rotational 
transitions in C3v and D3h molecules has been recently worked out by Aliev et 
a1.18.103. 

9.2. Spherical Top Molecules 

Forbidden rotational spectra: Td molecules can be considered as a special case 
of D2d molecules in which there is only one independent parameter97 
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(9.47) 

where the x, y, z axes lie along the S4 axes of the molecule. 

These molecules are nonpolar, thus according to Eq. (9.36) the parameter e;Y is 
given by 157-159 

(9.48) 

Methane, CH4 , has the following structure of the vibrational representation in the 
basis of the normal coordinates of vibration: 

(9.49) 

the coordinates q t in (9.48) are restricted to the triply degenerate coordinates F 2 • 

The expression for the ground state rotational levels of a Td molecule can be written 
as 

F(J, K) = BJ(J + 1) - D.J2(J + 1)2 + H.J3(J + 1)3 + 

+ [Dt + H4tJ(J + l)]f(J, K) + H6tg(J, K), (9.50) 

where B is the rotational constant, Ds and Hs are the coefficients of the quartic (Ds) 
and sextic (Hs) scalar centrifugal distortion which does not lead to a fine splitting 
of the rotational levels; Dt, H4t , and H6t are the coefficients of the quartic (Dt) and 
sex tic (H 4t' H 6t) tensor centrifugal distortion introducing the so-called tetrahedral 
splitting: f(J, K) and g(J, K) are eigenvalues of the quartic (1) and sextic (g) centri
fugal distortion operators which are tabulated up to J = 20 in refs157.160. 

The selection rules are fl.J = 0, ± 1. The Q branch transitions (fl.J = 0) will occur 
as an irregular radio frequency or microwave spectrum of transitions between the 
components of the centrifugal fine structure. If this fine structure is ignored, the 
frequencies of the R-branch transitions J + 1 - J are given by the usual equation 

v = 2B(J + 1) ; (9.51) 

they tend to occur in the far infrared spectrum. 

Watson97 predicted e? = 2·6. 10- 5 0 from the observed intensities of the 
U3 = 1 and V4 = 1 fundamental bands and the force field of CH4 • The existence of 
the rotation-induced dipole moment in CH4 was first demonstrated by Ozier161 

using molecular beam magnetic resonance technique. In an avoided crossing experi
ment Ozier obtained e;Y = 2·41 . 10- 5 0 in a good agreement with Watson's 
prediction. 
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The AJ = + 1 forbidden rotational spectrum of CH4 was later reported by 
Rosenberg et aU 62 (see als0163) between 80-200 cm- 1 using a path length of 
139 m and pressure in the range 0,076-0,16 MPa. Rosenberg and Ozier observed 
similar spectra for SiH4 (refs164.165) and GeH4 (refs166.167). The rotational constant 
Bo, the scalar centrifugal distortion constant D., and Watson's coefficients ez have 
been determined for these molecules from the frequencies and intensities of the lines. 

The Q branch transitions between the components of the fine structure of the 
ground state level are much more difficult to observe. Because of the small energy 
differences between the components, the intensities of these transitions are very weak 
( ;;d 0 -11 cm -1). On the other hand, they provide important information on the 
parameters of the tetrahedral splitting. 

In a unique double-resonance experiment, Curl et aU68.169 reported the first 
observation of the AJ = 0 transitions in the ground vibrational state of CH4. The 
basic idea behind the double-resonance experiment is to change the energy level 
population with respect to thermal population and thus to increase the absorption 
coefficient. Curl et al.168.I69 used the coincidence of the He-Ne 3'391lm laser 
frequency with the P+(7) vibrational-rotational transition frequency in CH4 (see 
Part 8, Fig. 11). The He-Ne laser radiation depletes the population of the ground 
state level F~2) and the radiofrequency radiation is swept across the frequency of 
transition pertaining to that level (Fig. 11). 

From the observed frequencies of the AJ = 0 forbidden rotational transitions 
in CH4 , Curl169 determined the quartic (Dt) and sextic (H4t' H 6t) centrifugal distor
tion constants. This enabled him to predict with sufficient accuracy the frequencies 
of other rotational transitions of CH4 in the microwave region. Based on these pre
dictions, Holt et al. I70 observed further AJ = 0 rotational transitions in CH4 by 
using a Stark modulation microwave spectrometer. 

The infrared-microwave double-resonance spectroscopy turned out to be a power
ful technique for measuring the weak AJ = 0 rotational spectra in tetrahedral mole
cules. especially because other infrared laser sources (C02 or N 20 lasers) make it 
possible to study forbidden rotational spectra in molecules heavier than CH4 • 

Because of the rotation-induced dipole moment and the vibration-induced dipole 
moment in the excited state, molecular transitions are shifted due to Stark effect 
when an electric field is applied (see, e.g., ref.17I). Thus the infrared-microwave 
double resonance Stark spectroscopy can also be used to determine the rotation
-induced dipole moments in tetrahedral molecules. 

Relatively recently. the extremely sensitive technique of the microwave Fourier 
transform spectroscopy 76 has been succesfully used to measure directly the ground 
state AJ = 0 forbidden rotational transitions in Td molecules. 

The most important results on the determination of the effective dipole-moment 
parameters and coefficients of the tetrahedral splittings are summarized in Tables VII 
and VIII. 
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Forbidden vibrational-rotational spectra: The component J1.z of the electric 
dipole moment along the space-fixed axis Z in the Td group is of species A2 and the 
overall selection rule for the rovibronic transitions is 

(9.52) 

All the components of the electric dipole moment vector of tetrahedral molecules 
with respect to the molecule-fixed axes x, y, z are of the species F2 and rovibronic 
transitions are possible only between vibronic levels which are connected by the 
species Fl' This means that the infrared active transitions from the ground vibronic 
state are possible only to the fundamental level of species F 2' 

The vibrational-rotational wavefunctions of the methane molecule can be written 
as t I J, 1*, R, kR), where R is the eigenvalue of the operator R2 (see Part 8) and kR 
is the eigenvalue of the operator Ri;. 

TABLE VII 

Centrifugal distortion dipole moments e;' in the ground vibrational states of tetrahedral mole
cules 

ex, 
z 

Molecule --_.- ---- Method" Ref. 
in D. 105 in Cm. 1035 

-------------

12CH4 2'406(45) 8'04(15) molecular beam 161 
magnetic resonance 

12CD4 1'15(9) 3-84(30) RF-IR, Stark 177 
13CD4 1,20(10) 4'01(33) RF-IR, Stark 178 

SiH4b 3·73(4) 12-44(13) MW, Stark I 79 (see also 180) 

SiF4 0,19(9) 0'63(30) MW, Stark 181 
GeH4 3-33(5) 11'11(17) MW-IR. } 182 

IR-IR, Stark 
SnH4 4·26(12) 14'21(40) IR-IR, Stark 183 

" RF-IR: radiofrequency-infrared double resonance; MW-IR: microwave-infrared double 
resonance; IR-IR: infrared-infrared double resonance. b Oka, Kreiner et a\.213,214 reported 
independent determination of the vibration-induced dipole moment in the v4 = 1 state of SiH4 
(1'46(5).10- 2 D) and e;' = 2'97(19).10- 5 D by measuring the first-order Stark effect on the 
infrared vibration-rotation lines in the triply degenerate fundamental bands (see also ref. 215 as 
for the second-order Stark effect in SiH4 and ref. 77 as for the rotational transitions in the v3 = 1 
state). 
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TABLE VIII 

Q Parameters of the tetrahedral splitting in the ground vibrational state of Td molecules (in Hz units) 

" ? 
n o 
3 
3 
c: 
? 

"< 
~ 
! 
;0 
co .:g 

~-~ ~-~ -- - -- .-.-~----- --------"---"-- -----

Molecule D t H4t H6t Method" Ref. 
-~------------ -

12CH4 132930 -16-6 10-2 }MW 170, 184 (see also 169, 185 
132 943-57(97) -16-9790(90) 10-9956(38)b MWFTS for RF-IR), 6 

13CH4 132980-81(122) -16-9791(112) 11-1786( 45l MWFTS 186 
12CD4 32657-9(18) -2-087(13) 1-1496(10)b } MMFTS 6 

32649-7(17) -1-9797(44) 1-1027(16) RF-IR 187 
13 CD4 32660-0(12) - 2-0302(61) 1-1692(29)b RF-IR, 188 

MMFTS 
28 SiH4 74861(15) -7-14(30) 6-57(110) } RF-IR 189 

74 749-87(22) - 6-03530(120) 2-59885(51) MWFTS 190 (see also 191) 
28 SiF4 147-55(10) RF-IR 192 
700eH4 67774-66(14) - 5-38483(9) 2-96868(27)b 

} MMFTS 72OeH4 67775-865(99) - 5-38735(68) 2-97188(20)b 193 (see also 194 for MW-IR) 
74OeH4 67 776-47(10) -5-38545(69) 2-97435(24)b 

SnH/ 53 398-6(70) -4-297(46) 2-340(16) 
} RF-IR 

183 
1890s04 72(18) 

} 195 1920s04 80(26) 

- ----_.- "------ ------ _ .. - --_. 

" MW microwave; MWFTS microwave Fourier transform: RF-IR radiofrequency-infrared double resonance_ b Octic parameters have also 
been determined_ C The resonances from different isotopic species (PSn, p = 116, 117, 118, 119, 120, 122, 124) were found to yield almost 
identical transition frequencies_ 

;;01 ... 
<: n;-
::;; 

N 
0'1 
~ 
IQ 
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Selection rules for the allowed transitions from the ground vibrational level to the 
fundamental vibrational level can be summarized as follows 1 : 

/'iv, = 1, t = 3 or 4, 

(9.53) 

However, R is not a good quantum number because higher-order vibrational-rota
tional interactions can mix states with different R. Furthermore, the /'iR = 0 selec
tion rule has been obtained in the approximation which neglects second and higher
order derivatives in the expansion of the dipole moment [Eq. (3.18)]' Thus forbidden 
transitions with 

(9.54) 

can also occur if they do not violate the overall symmetry selection rule (9.52). 

There is another "selection rule" for allowed and forbidden transitions. This rule 
is related to the counter number N which is added as right numerical superscript 
if a given symmetry species occurs more than once in a group of levels F+, FO, F
[Eq. (8.14)]' In F+, F- groups, we start counting from the highest level, in FO 
from the lowest level (Figs 11 and 15). In an allowed transition, 

/'iN = 0 (9.55) 

FIG. 15 

Allowed (full lines) and forbidden (dashed 
lines) transitions between the ground vibra
tional level and the v3 = 1 level in CH4 • 

The scale in the upper vibrational state is 
compressed tenfold with respect to that of 
the ground state and the distances between 
the P+. pO, and P- centers of gravity are 
much larger than shown (according to 
ref! 96) 
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but 

ft.R = 0, ft.N:F 0 (9.56) 

are approximately allowed transitions 1 (Fig. 15). 

Although the ft.] = + 1 pure rotational transitions in Td molecules provide infor
mation on the rotational constants B and scalar centrifugal distortion coefficients162• 
163.172, the most precise values of the scalar parameters so far have been obtained 
by measuring the frequencies of forbidden vibrational-rotational transitions (see, 
e.g., refs173-176). For example, for 12CH4 they are175 (in MHz units): 

Bo = 157122'28(64), Ds = 3'3240(43), Hs = 173'0(96).10-6 . 

10. FINAL REMARKS 

Although it is difficult to predict further development in a research field, there is 
little doubt that measurement of forbidden transitions will soon become almost 
routine whenever the sensitive high-resolution techniques will be used to study 
vibrational-rotational spectra of highly symmetric polyatomic molecules. 

The theory of these transitions is now well understood for symmetric top as well 
as spherical top molecules but molecules with large amplitude motions require 
further work. For example, as it was discussed in Parts 8 and 9, centrosymmetrical 
molecules cannot have vibrationally or rotationally induced forbidden transitions. 
Ethane, C2H6, is generally thought of as containing a center of symmetry and be
longing to the point group D3d , corresponding to the equilibrium configuration of 
the rigid molecule. The hindered internal rotation, allowing tunneling between sym
metrically equivalent equilibrium configurations, is not included as a symmetry 
operation in the group D3d [the (123) permutation of the hydrogen atomic nuclei 
in CH3 group is not in the D3d group]. Hougen 197 has shown that the proper sym
metry group which takes into account all the feasible permutations and permutation
-inversion symmetry operations in ethane-like molecules, is Gj6' According to this 
group, ethane-like molecules contain no center of symmetry and pure rotational 
transitions are therefore not strictly forbidden. 

Rosenberg and Susskind198 have developed the theory of pure rotational transi
tions in doubly degenerate torsional states of ethane but so far they have not yet 
been observed. A suitable candidate for this investigation is certainly 2-butine, 
CH 3':=.=CCH3, with an almost free internal rotation of both CH3 groups (see ref.199 
as for the forbidden torsional spectra in CH3SiH3). 

It is obvious that any asymmetric substitution of isotopes in a nonpolar molecule 
reduces the original high symmetry, thus making the molecule slightly polar. For 
example, CH3D or CD3H have the C3v point group symmetry and observable pure 

Collect. Czech. Chem. Commun. (Vol. 54) (1989) 



2622 Papousek: 

rotational spectra obeying the usual selection rules for C3v groups. The isotopically 
induced dipole moments are of course very small (:::::: 10- 3 -10 - 4 D). Because the 
rotational transitions have the usual selection rules of a polar molecule, they will not 
be discussed here. An excellent review of this subject has been recently published by 
Hirota200 (see also ref. 20 !). 

Much further work should also be done on the theory as well as experiment con
cerning selection rules for transitions in extremely strong light fields, which are dif
ferent from those discussed here. This subject may be important for example for 
laser induced chemistry or laser isotope separation processes, but its discussion is 
outside the scope of the present review. 

Finally, let us mention an interesting problem of the ultrahigh resolution spectro
scopy concerning forbidden transitions in tetrahedral and octahedral molecules. 
A tetrahedral or octahedral molecule such as 1890S04 or 235UF 6, having a central 
atom with nuclear spin I ~ 1 and outer atoms with I ~ 1/2, does not, to a first 
approximation, show nuclear quadrupole splittings in the rovibrational states of 
a totally symmetric electronic state. For even though the central nucleus may possess 
an electric quadrupole moment, the electric field gradient at the central position 
vanishes because of the high symmetry. In many excited vibrational and/or rotational 
states of a totally symmetric electronic state, however, the high symmetry is broken 
and a small electric quadrupole coupling is produced. 

The vibrationally induced nuclear quadrupole coupling in tetrahedral and octa
hedral molecules is therefore an analogue of the vibrationally induced dipole moment 
problem first treated by Mizushima and Venkateswarlu68 (Part 8). There is also 
a rotationally induced nuclear quadrupole coupling which is closely related to the 
rotationally induced dipole moment problem discussed in Part 9 of this review. 

The quadrupole hyperfine structure in the infrared rovibrational spectrum of 
1890S04 arising from such quadrupole couplings was first reported by Letokhov 
et al.202-204 by using saturation spectroscopy. Later Borde et al. 205 by using a high 
pressure CO2 waveguide laser, succeeded in observing three hyperfine patterns in 
1890S04· 

Hougen and Oka206 developed a theory of the vibrationally induced nuclear 
quadrupole coupling in tetrahedral and octahedral molecules and applied it to the 
analysis of the hyperfine patterns observed by Borde et al. 205. Subsequently Palma 
and Borde207 developed a theoretical treatment for the rotationally induced quadru
pole coupling and applied it to 1890S04. Borde et al. 208 succeeded in measuring the 
scalar and tensor coupling constants due to the rotationally induced effects in the 
ground state of this molecule. Scappini et al. 209 have recently observed the hyperfine 
structure in the V3 fundamental band of 1890S04 due to the vibrationally induced 
nuclear quadrupole coupling by using the technique of microwave modulation CO2 

laser sideband spectroscopy with the inverse Lamb dip. 
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Although all this seems to be a highly academic research, it is not. Extremely 
important practical applications can be anticipated in quadrupole coupling investiga
tions, since observable quadrupole splittings can provide a very simple tool for 
discriminating between lines of 238UF 6 (I = 0) and 235UF 6 (I = 7/2) in laser isotope 
separation techniques. 

This paper is based on a series of lectures which I held in the Department of Physical Chemistry 
of the University of Ulm in 1987 and in the Molecular Spectroscopy Division of the Bhabha Atomic 
Research Centre in Bombay in 1988. I would like to express my gratitude to many colleagues 
in these two centres of high-resolution molecular spectroscopy for stimulating discussions on the 
problem of forbidden transitions. Especially Prof. W. A. Kreiner prorided valuable information on 
his research of forbidden transitions in spherical top molecules and Dr K. T. Balasubramanian on 
the transitions induced by the magnetic dipole 1Jloments. 

1 am also indebted to Drs P. Jensen, V. Spirko, K. Sa,·ka. and S. Urban for critically reading 
substantial parts of the manuscript and/or for useful discussions. 

APPENDIX 

Mixing of the Rovibronic States by the External Electric and Magnetic Fields 
(see refs 21 0-212) 

As a result of applying an external electric field Ez in the direction of the space-fixed 
axis Z, the molecular vibration-rotation Hamiltonian Hvr is augmented by the term 

HStark = - Il~e) Ez , (A.I) 

where Ilt;) is the electric dipole moment operator along the field direction [see also 
Eq. (2.11)]' 

As discussed in Section 5, Il~e) belongs always to the antisymmetric representation 
F* of the molecular symmetry group (F* has + 1 for all permutation operations and 
-1 for all permutation-inversions). Because HStark has the symmetry of Il~el,we obtain 
that 

(A.2) 
if 

(A.3) 

In other words, we can write the selection rule for the states which are mixed by the 
Stark effect as flFevr = F*. 

Furthermore, Il~) transforms according to the representation D( 1) of the external 
rotation group K(S), thus HStark mixes states with the flJ = 0, ± 1 (if we neglect 
the nuclear hyperfine structure) or flF = 0, ± 1 (if we take it into account). Note 
that in the presence of an external electric field, J (or F) is no more a good quantum 
number. 
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As an example, let us consider a molecule of C3v symmetry. Here r(llz) = A2 
and therefore only At states can be mixed with the A2 rovibronic states and the E 
states with the E state;. Thus the A +# E transitions between the ortho- and para-states 
are not allowed by the Stark effect but the At ~ At or A2 ~ A2 transitions (which 
are forbidden by the overall symmetry selection rules in the absence of an external 
electric field) are allowed in the Stark spectroscopy. 

The IlJ = 0 rule gives us the condition for a first-order Stark effect which results 
from the matrix elements of the Stark Hamiltonian between the degenerate com
ponents: 

<1, m, r, nl HStarklJ, m', r', n') = - <1, m, r, nl 1l~)IJ, m', r" n') Ez , (AA) 

where m is the quantum number of J z for the space-fixed Z axis; r is the rovibronic 
symmetry species; n labels the components of r (other quantum numbers are not 
important in the present consideration, and are ignored). 

Thus Eq. (A.3) gives us the simple symmetry condition for a first-order Stark effect 

(A.5) 

However, Watson211 has shown that Eq. (A.5) is only necessary but not sufficient 
condition for a first-order Stark effect to occur. A more restrictive condition obtained 
by Watson is 

( A.6) 

requlflng r(llz) belong to the antisymmetric component of r2. In order for this 
condition to be satisfied, r must be degenerate. 

For example, for the E rovibronic levels of a C3v molecule we have E ® E = 
= Al + A z + E and r(llz) belongs to the antisymmetric component A z. Thus 
a first-order Stark effect is allowed. For the E rovibronic levels of a D2d molecule 
we have [E2]antisym = Az and r(llz) = R l . In this case a first-order Stark effect is 
forbidden. In general, a nonpolar symmetric top molecule cannot have a first-order 
Stark effect (except in cases of accidental degeneracy). 

Quite analogously, if Rz is the external magnetic field in the direction Z, the Zeeman 
Hamiltonian is 

(A.7) 

where Il~m) is the magnetic dipole moment operator along the Z axis [cf. Eq. (2.15)]' 
Because Il~m) is invariant with respect to all the operations of the molecular sym
metry group and belongs to D(1), states which are mixed by the Zeeman effect are 
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those which satisfy the following rule: 

fl.} = 0, ± 1; fl.revr = 0 . (A.B) 

In other words, Hz.eman has the symmetry of H vr. 

Approximate selection rules for the vibrational quantum numbers and rotational 
quantum numbers (K for a symmetric top; and Ka and Kb for an asymmetric top) 
can be deduced by expressing Jl~e) and p.~m) in terms of the components along the 
molecule-fixed axes [cf. Eq. (3.14)]. 

Note added in prool: H. Prinz et al. fount{ recently [J. Mol. Spectrosc. 135, 144 (1989)] that 
the vibration-induced dipole moment in the v4 = 1 state of 13CD4 and SiH4 is modified consider
ably by the vibration interaction with v2 = 1 [1144 = -2'627(11) . 1O-2 D in 13CD4 and 114 = 

~ -1'203(11). 1O-2D in SiH4]. 
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